# Maximum number of "almost orthogonal" vectors one can embed in Hilbert space

+ 0 like - 0 dislike
1010 views

In a Hilbert space of dimension $d$, how do I calculate the largest number $N(\epsilon, d)$ of vectors $\{V_i\}$ which satisfies the following properties. Here $\epsilon$ is small but finite compared to 1.

$$<V_i|V_i> = 1$$

$$|<V_i|V_j>| \leq \epsilon, i \neq j$$

Some examples are as follows.

1. $N(0, d)$ = d

2. $N\left(\frac{1}{2}, 2\right)$ = 3, this can be seen by explicit construction of vectors using the Bloch sphere.

3. $N\left(\frac{1}{\sqrt{2}}, 2\right) = 6$, again using the same logic.

How do I obtain any general formula for $N(\epsilon, d)$. Even an approximate form for $N(\epsilon, d)$ in the large $d$ and small $\epsilon$ limit works fine for me.

EDIT: The question is now resolved. See the answer at https://mathoverflow.net/a/336395/78150

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOv$\varnothing$rflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification