Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

160 submissions , 132 unreviewed
4,169 questions , 1,545 unanswered
5,018 answers , 21,289 comments
1,470 users with positive rep
589 active unimported users
More ...

  How to reconcile scaling dimension and gauge transformation in 2+1D U(1) Maxwell theory

+ 0 like - 0 dislike
55 views

In 2+1D (free) $U(1)$ Maxwell theory, power-counting in the action implies that the gauge potential $A_{\mu}$ should have scaling dimension 1/2. This is borne out by the propagator $\langle F_{\mu \nu}(x)F_{\lambda \sigma}(0) \rangle \sim 1/x^3$ or, more schematically, by the (gauge-dependent) propagator $\langle A_{\mu}(x) A_{\nu}(0) \rangle \sim 1/x$. However, the gauge transformation rule $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha$ means that $A_{\mu}$ should have dimension 1, as $\alpha$ must be dimensionless so that $e^{i\alpha}$ is a well-defined element of the gauge group $U(1)$.

Why do these power counting arguments give different results? Is that fact meaningful?

Note that in Chern-Simons theory or in 3+1D $U(1)$ Maxwell theory, there are no such issues; power-counting in the action also leads to $A_{\mu}$ having dimension 1, consistent with the gauge transformation law.

Thanks!

asked Mar 28 in Theoretical Physics by anonymous [ no revision ]

If your convention is such that  $ A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha$  is the gauge transformation for gauge fields, then on the matter field the gauge transformation should be a multiplication by $e^{ig \alpha}$ where $g$ is the gauge coupling. Remember the gauge coupling is dimensionful in 2+1 dimension, which means $\alpha$ is also dimensionful.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...