Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

(propose a free ad)

If we start with the definition of the coset $AdS_{D+2}:=\frac{O(2,D)}{O(1,D)}$ , How do we derive the constraint equation for the AdS coordinates $\mu \nu -(X^{i})^{2}=R^{2}$ ?

Consider a vector in $\mathbb{R}^{2,D}$ with norm $-R^{2}$ , The set of all vectors with this norm are rotated into each other by the $O(2,D)$ Rotations. Use this group to make the vector in the form $X=(1,0,0...)$ It is obvious that the isotropy group that leaves this invariant is $O(1,D)$ and thus we get the equivalence because these vectors with the specified norm are in one to one correspondance with the group transformations modulo the isotropy group.

user contributions licensed under cc by-sa 3.0 with attribution required