Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

160 submissions , 131 unreviewed
4,181 questions , 1,555 unanswered
5,027 answers , 21,344 comments
1,470 users with positive rep
593 active unimported users
More ...

  Does this Toy model work with Equivalence principle and Newtonian Gravity?

+ 0 like - 1 dislike
63 views
 

Question
---
Prove or disprove the below toy model for non-relativistic quantum gravity (in absence of other forces) is agreeable (does it violate) with the equivalence principle and Newtonian gravity 

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} (\nabla \psi) \cdot (\alpha \psi) + \frac{1}{\psi(x,y,z)} (\alpha \cdot \nabla) \psi = 4 \pi G \rho_m
\end{equation}

Where $\alpha  = (\frac{-i}{m \hbar}([H,p_x],[H,p_y],[H,p_z]] )$,  $H$ is the Hamiltonian, $\rho_m$ is the mass density, $p_x,p_y,p_z$ is the momentum in the $x,y,z$ directions, $\psi$ is the wave-function (of say an electron in a gravitational field). 

Given a particular mass density one can find a corresponding potential energy and thereby find the energy-eigenvalues as done in normal quantum mechanics.  
 
How the Toy model was constructed
---
Let, us first begin with the equivalence principle's famous thought experiment. Someone is stuck within a lift, drops, an electron and thereby is unable to conclude if it fell due gravity or him being accelerated by say  a rocket attached to the lift. Einstein's conclusion was that no matter what one did one would never be able to distinguish between the two situations. But what if the person in the lift starts to measure the the standard deviation of the electron's acceleration by shining light on it?? Answer: He will get some standard deviation but will but will be unable to differentiate as to why this phenomena is occurring. But, note if this were a purely classical result one would conclude that the standard deviation attribute to an experimental errors. However, what about quantum mechanics? What would it tell us about the standard deviation?

The Quantum Analysis
---
We continue motivated by the above thought experiment. First we define the velocity operator in quantum mechanics using Heisenberg's equation of motion:

\begin{equation}
\dot x = v = \frac{[H,x]}{i \hbar} = [\frac{p^2}{2m},x] = \frac{p}{m}
\end{equation} 

Now to define the acceleration operator. One defines the following:

\begin{equation}
\dot v = \alpha =\frac{[H,v]}{i \hbar} =  \frac{-i}{\hbar}[V(x),\frac{p}{m}]
\end{equation}

Where $V(x)$ is the potential energy, $H$ is the Hamiltonian, $x$ is the position, $\alpha$ is the acceleration operator and $v$ is the velocity operator.

We note:

$$ [x, \alpha] = 0$$  

While $$ [p, \alpha] \neq 0$$

Note using the above an uncertainty principle can be built but that will not be explicitly stated here. 
    
Measuring the acceleration
---
Let's continue with the experiment and work in $3$ dimensions with standard Cartesian co-ordinates $x,y,z$. The person inside the lift measures acceleration this measurement is independent of the fact of what is causing the acceleration (gravity or an external force).

Let us assume the acceleration measured a point $x$:

\begin{equation}
\alpha_x \psi(x,y,z) = a(x,y,z) \psi(x,y,z) \implies \frac{1}{\psi(x,y,z)} \alpha \psi(x,y,z) = a(x,y,z)
\end{equation}

where $a(x,y,z)$ is the acceleration eigenvalue of $\psi$ as a function of $x,y,z$

Let us measure the acceleration at $x + \epsilon$:

\begin{equation}
\alpha_x \psi(x+ \epsilon,y,z) = a(x+ \epsilon,y,z) \psi(x+ \epsilon,y,z) \implies \frac{1}{\psi(x+ \epsilon,y,z)} \alpha \psi(x+\epsilon,y,z) = a(x+ \epsilon,y,z)
\end{equation}

Subtracting the above $2$ equations and dividing by $\epsilon$:

\begin{equation}
\frac{\frac{1}{\psi(x+ \epsilon,y,z)} \alpha_x \psi(x+\epsilon,y,z) - \frac{1}{\psi(x,y,z)} \alpha_x \psi(x,y,z)}{\epsilon} = \frac{a(x+ \epsilon,y,z) - a(x,y,z)}{\epsilon}
\end{equation}

Where $\epsilon$ is a function of position and hence commutes with acceleration. 

\begin{equation}
\frac{(\frac{1}{\psi(x,y,z)} - \frac{\epsilon}{\psi^2(x,y,z)}\frac{\partial \psi}{\partial x}) \alpha_x (\psi(x,y,z)+ \epsilon  \frac{\partial \psi}{\partial x}) - \frac{1}{\psi(x,y,z)} \alpha_x \psi(x,y,z)}{\epsilon} = \frac{a(x+ \epsilon,y,z) - a(x,y,z)}{\epsilon}
\end{equation}

Taking the limit $\epsilon$ to $0$ :

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} \frac{\partial \psi}{\partial x} \alpha_x \psi + \frac{1}{\psi(x,y,z)}\alpha_x\frac{\partial \psi}{\partial x} =  \lim_{\epsilon \to 0} \frac{a(x+ \epsilon,y,z) - a(x,y,z)}{\epsilon}
\end{equation}

Proceeding in a similar manner for the co-ordinates $y$ and $z$:

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} \frac{\partial \psi}{\partial y} \alpha_y \psi + \frac{1}{\psi(x,y,z)}\alpha_y\frac{\partial \psi}{\partial y} =  \lim_{\epsilon \to 0} \frac{a(x,y+ \epsilon,z) - a(x,y,z)}{\epsilon}
\end{equation}
 
\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} \frac{\partial \psi}{\partial z} \alpha_z \psi + \frac{1}{\psi(x,y,z)}\alpha_z\frac{\partial \psi}{\partial z} =  \lim_{\epsilon \to 0} \frac{a(x,y,z+ \epsilon) - a(x,y,z)}{\epsilon}
\end{equation}

Adding all $3$ equations.
\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} (\nabla \psi) \cdot (\alpha \psi) + \frac{1}{\psi(x,y,z)} (\alpha \cdot \nabla) \psi =  \nabla \cdot a
\end{equation}

Where $\alpha$ is $(\alpha_x,\alpha_y,\alpha_z)$ and $a$ is the acceleration vector. Note $a$ must be $-g$ where $g$ is the gravitational field for an outside observer. We can now use Guass's law for gravity.  

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} (\nabla \psi) \cdot (\alpha \psi) + \frac{1}{\psi(x,y,z)} (\alpha \cdot \nabla) \psi = - \nabla \cdot g =  4 \pi G \rho_m
\end{equation}

Writing it explicitly:

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} (\nabla \psi) \cdot (\alpha \psi) + \frac{1}{\psi(x,y,z)} (\alpha \cdot \nabla) \psi = - \nabla \cdot g =  4 \pi G \rho_m
\end{equation}

Where $\alpha  = (\frac{-i}{m \hbar}([H,p_x],[H,p_y],[H,p_z]] ) $

Conclusion
---
Writing the above explicitly:

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} (\nabla \psi) \cdot (\alpha \psi) + \frac{1}{\psi(x,y,z)} (\alpha \cdot \nabla) \psi = 4 \pi G \rho_m
\end{equation}

Where $\alpha  = (\frac{-i}{m \hbar}([H,p_x],[H,p_y],[H,p_z]] )$,  $H$ is the Hamiltonian, $\rho_m$ is the mass density, $p_x,p_y,p_z$ is the momentum in the $x,y,z$ directions.

Hence, in conclusion:

\begin{equation}
\frac{-1}{\psi^2 (x,y,z)} (\nabla \psi) \cdot (\alpha \psi) + \frac{1}{\psi(x,y,z)} (\alpha \cdot \nabla) \psi = 4 \pi G \rho_m
\end{equation}

\begin{equation}
H\psi_n = - \hbar^2 \frac{\nabla^2}{2m} \psi_n + V_{\text{eff}} \psi_n = E_n \psi_n \end{equation}

\begin{equation}
\langle \psi | \psi \rangle =1 \end{equation}

All $3$ equations must be solved simultaneously in order to determine the effective potential and the wavefunction. Hence, given any empirically determined mass density one can find an effective potential and it's corresponding wavefunction. 

asked Jan 5 in Theoretical Physics by Asaint (35 points) [ revision history ]
edited Jan 6 by Asaint

I believe what you are working towards to is something like the Schrödinger–Newton equation. However, if you really do end up with that equation, this is only a quasi-classical treatment - the $\psi$ is quantum but not the gravitational field. Taking something quantum and coupling it to classical gravity does not amount to quantum gravity!

@Void I think of the above not as a fundamental theory but simply a "toy model." My goal is simple: construct a theory which is in accordance with the equivalence principle and Newtonian gravity measure deviations from the standard theory. Nowhere have I made the claim this is a fundamental theory ... Also the above is definitely not the Schrodinger-Newton Equation. I would recommend you go through "How the toy model was constructed" before you make a claim all I have done is "Taking something quantum and coupling it to classical gravity." I have used the equivalence principle which is true in both classical gravity and general relativity. 

@Asaint It is entirely clear to me how you construct the model, but you do not give two last key pieces, and that is 1) how $\rho_m$ is determined, and 2) how  $H$ is determined. If you put $\rho_m = m |\psi|^2$ with $m$ the mass of the particle, and $H = -\hbar^2 \Delta/2m + m\Phi_N$, where $\Phi_N$ is the Newtonian gravitational potential, then your equations are exactly the Schrödinger-Newton equations. If you specify $\rho_m$ and $H$ in a different way please say so. However, without such a specification the equations do not amount even to a toy model because no dynamics are really given.

@Void $\rho_m$ is determined empirically or from the Newtonian theory I have edited the conclusion to make it clearer what I mean. $\rho_m$ is the mass density of the external object say that of Earth and $\psi$ is the wavefunction of the electron. Hopefully this makes more sense now. 

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar\varnothing$sicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...