• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,075 questions , 2,226 unanswered
5,347 answers , 22,749 comments
1,470 users with positive rep
818 active unimported users
More ...

  Neutral vector boson from renormalizing IVB (intermediate vector boson) theory?

+ 1 like - 0 dislike

Consider the intermediate vector boson (IVB) theory, with the interaction Lagrangian density $$\mathcal L_I = \sum_l g_W (\overline{\psi}_{\nu_l} \gamma^\alpha(1- \gamma_5)\psi_l ) W_\alpha^\dagger + \text{h.c.} \tag{1}$$ where $W_\alpha$ is a complex massive vector field, the $\psi_l$ are leptons and $\psi_{\nu_l}$ corresponding neutrinos. There are two "problems" with this theory. First, the lowest order diagrams contributing to $\nu_\mu e^-$ scattering are so 4:th order in the coupling constant $g_W$. (This figure and the one below reproduced from [M&S].) However, the observed cross sections are comparable to $\nu_e e^-$-scattering cross sections, for which the leading contributions are clearly second order in $g_W$. Thus one would be lead to an interaction with a neutral vector boson giving second order diagrams like the one below.

Second, the diagrams in Figure 16.11 are divergent; and since $W_\alpha$ is massive, the interaction (1) is not renormalizable.

Now, I think these are related. If we take the Wilsonian renormalization group view, then under RG flow all couplings are renormalized. If one is initially zero in the Lagrangian, RG flow will give it a non-zero value; hence the maxim that all interactions consistent with symmetry principles should be included in the Lagrangian.

One such interaction for the field content in IVB is $$\mathcal L_Z = g_Z \sum_l \overline{\psi}_{l}\gamma^\alpha(1-\gamma_5)\psi_l) \partial_\alpha (W_\beta^\dagger W^\beta) \; + \; (l \leftrightarrow \nu_l).$$ If we now put $Z^0 = \partial_\alpha (W_\beta W^\beta)$, this interaction gives the second diagram. This would be analogous to the pion-mediated scattering in effective theories from QCD, the pion operators being $\sim \overline{q}q$. However, I am not sure I have internalized the RG flow view completely or correctly, so my question is if this line of thinking is sound and one could produce an effective field theory from (1), including diagrams like that of the second figure. Perhaps such a calculation has already been done?


  • [M&S] Franz Mandl and Graham Shaw. *Quantum Field Theory*. Second edition. John Wiley and Sons, 2010.
asked May 1, 2017 in Theoretical Physics by Robin Ekman (215 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights