• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

204 submissions , 162 unreviewed
5,026 questions , 2,180 unanswered
5,344 answers , 22,687 comments
1,470 users with positive rep
815 active unimported users
More ...

  Relationship between ergodicity and (non-)holonomicity of a system?

+ 0 like - 0 dislike

The ergodic hypothesis assumes that a system can explore its whole phase space in the course of time.

Holonomic constraints make the system integrable and reduce its degrees of freedom, which should if I understand it correctly also break any ergodicity that would be present without these constraints.

Is non-holonomicity a necessary and sufficient condition for the ergodicity hypothesis to be true?

Can anything else break ergodicity apart from holonomic constraints?

asked Jan 30, 2017 in Theoretical Physics by Dilaton (6,240 points) [ no revision ]

Holonomic constraints make a system not necessarily integrable.

Symmetries also break ergodicity since they imply additional conservation laws by Noether's theorem.

Even on the manifold defined by fixed values of all conserved quantities, ergodicity is not the rule but a restrictive condition. Systems close to integrability are not ergodic for low energies, due to the KAM theorem.

We had some recent discussion on ergodicity here: http://www.physicsoverflow.org/38287

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights