Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

146 submissions , 123 unreviewed
3,953 questions , 1,403 unanswered
4,889 answers , 20,762 comments
1,470 users with positive rep
507 active unimported users
More ...

g-factor for the magnetic moment of electron

+ 0 like - 0 dislike
146 views

I would like to know what is the theoretical explanation (if it's possible something more than just "The Dirac equation") of the fact that the g-factor for the electron relating the magnetic moment with the spin is double than that relating the magnetic moment with the angular momentum of the electron in a circular orbit.

Thanks

asked Sep 25, 2016 in Theoretical Physics by raul (0 points) [ no revision ]

This is explained in any textbook treating the Dirac equation. Please read first such a standard account and then amend your question by giving some details about what still remains unclear (if anything).

Please explain it then, Arnold. I don't think I've ever seen a satisfactory explanation myself.

@JohnDuffield: Use the minimal prescription for the external field in the Klein Gordon equation and expand. Multiply the Dirac equation in an external magnetic field with $\gamma \partial$ and simplify. Compare the results. I don't see anything unsatisfactory. 

@Arnold Neumaier : with respect, that doesn't explain it. 

@JohnDuffield did you try what Arnold said, where did you get stuck? The purpose of PhysicsOverflow is generally not to give popular-level explanations ...

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar\varnothing$sicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...