# Proving WZW primaries are Virasoro primaries

+ 3 like - 0 dislike
302 views

It is stated (for example, in Di Francesco, Mathieu, and Senechal's CFT book, section 15.3.1) that if a field $\phi$ is a "WZW primary", that is, it has OPE

$$J^a(z) \phi(w) \sim -\frac{t^a \phi(w)}{z-w}$$

where $J^a$ are the chiral currents in a WZW theory and $t^a$ are some representation of the generators of the corresponding Lie algebra, then $\phi$ is a Virasoro primary. The "proof" that I can find (see the same section of the same book) only proves that $L_0|\phi \rangle = h |\phi \rangle$, where $L_n$ are Virasoro modes and $h = C/2(k+g)$. ($C$ is the quadratic Casimir $t^a t^a$ of the representation, $k$ is the level of the theory, and $g$ is the dual Coxeter number.) This indeed proves that $\phi$ is a scaling field. However, it does not tell me that I get the correct action of $L_{-1}$ to actually see that $\phi$ is primary, or equivalently that the OPE with the energy-momentum tensor has a term $\partial \phi/(z-w)$. How can I see this fact?

I have tried calculating the OPE of $\phi$ with the Sugawara energy-momentum tensor directly; what I got was

$$T(z) \phi(w) \sim \frac{1}{2(k+g)} \left(\frac{C \phi(w)}{(z-w)^2} - \frac{2 t^a :J^a \phi:(w)}{z-w}\right)$$

where the colons denote normal ordering and repeated indices are summed. The first term gives the correct scaling dimension as expected, but (assuming I did the calculation correctly) I don't know what to do with the normal ordered product in order to get $\partial \phi/(z-w)$. Thanks!

EDIT: I think this is actually false in general. Consider two decoupled CFTs, the WZW and some second theory CFT$_2$ with the same speed of light so that the tensor product theory, with energy-momentum tensor $T = T_{WZW} + T_{CFT_2}$, is conformally invariant. Assuming everything in CFT$_2$ is a singlet under the action of the group defining the WZW theory, pick a WZW primary $\phi$ and any CFT$_2$ Virasoro primary $\psi$. Then it's easy to see from the OPEs that the field $\phi \otimes \psi$ is a WZW primary but not a primary of the WZW theory's Virasoro. (However, if $\phi$ is itself a primary of the WZW's Virasoro, then $\phi \otimes \psi$ is of course a primary of the larger theory.)

A modification of the question: if the WZW theory is not embedded in a larger theory, then are WZW primaries always Virasoro primaries? asked Jun 15, 2016
edited Jun 16, 2016

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.