# Superficial degree of divergence on Weinberg

+ 3 like - 0 dislike
896 views

Reading volume 1 of Weinberg's QFT book, chapter 12, page 505 he says that if you consider a diagram with degree of divergence $D\geq{}0$, its contribution can written as a polynomial of order $D$ in external momenta. As an example he considers the $D=1$ integral

$$\int_0^{\infty}\frac{k\,dk}{k+q}=a+bq+q\ln{q}$$

where $a$ and $b$ are divergent constants, and we see that we get a polynomial or order 1 in the external momenta $q$. He then says, and I quote

"Now, a polynomial term in external momenta is just what would be produced by adding suitable terms to the Lagrangian, if a graph with $E_f$ external lines of type $f$ (refering to field type) has degree of divergence $D\geq{}0$, then the ultraviolet divergent polynomial is the same as would be producedby adding various interactions $i$ with $n_{if}=E_f$ fields of type $f$ and $d_i\leq{}D$ derivatives."

can anybody elaborate on this a bit? in particular, how and where does the polynomial arise with the added Lagrangian term?

One derivative in counter term corresponds to one factor of $p$, you can form polynomials in $p$ by having multiple derivatives.
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\varnothing$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.