• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

202 submissions , 160 unreviewed
4,981 questions , 2,140 unanswered
5,339 answers , 22,619 comments
1,470 users with positive rep
813 active unimported users
More ...

  AdS/CFT and Kondo problem/ Ginzburg-Landau theory

+ 2 like - 0 dislike

I was reading the review on Unconventional superconductivity by Mike Norman, towards the end (page 22) he comments two things about AdS/CMT:

  1. "In the condensed matter context in two dimensions, one typically flows from an $AdS_4$ geometry near the boundary to an $AdS_2$ times $R_2$ one near the black hole horizon. The net result is local quantum criticality, since the spatial $R_2$ part has essentially decoupled ($AdS_2$ being dual to $CFT_1$, a conformal field theory in time). In that sense, it is similar to the Kondo problem, which is local in space and critical in time."

  2. "Although this approach (AdS/CFT) is truly non-perturbative in nature, for most applications, the theory is essentially at the Ginzburg-Landau level. That is, one assumes a scalar field. Since it is a scalar, it should correspond to some charge 2e field, but since the theory does not explicitly invoke pairing, extra terms have to be added to the action to describe the coupling of fermions to the scalar field (i.e, to generate a Bogoliubov dispersion)."

I had hard time trying to understand the boldfaced statements, if someone can comment that'll be helpful. Thanks!

This post imported from StackExchange Physics at 2015-12-26 18:06 (UTC), posted by SE-user Jon Snow
asked Dec 25, 2015 in Theoretical Physics by Jon Snow (15 points) [ no revision ]

1 Answer

+ 0 like - 0 dislike

I don't know much about the AdS/CFT stuff, but the statements about the Kondo effect and superconductivity are rather straightforward:

1) The classical setting for the Kondo effect is an impurity spin coupled to a Fermi sea, say e.g. a 1D fermion system, and the interaction between the spin and the fermions results in a nontrivial fixed-point for the boundary condition of fermions. So the effect is in a sense a boundary one, and one can study it by integrating out the bulk fermions. So it is extremely local in space (just one point), and critical in time (meaning that at the fixed point, if we look at spin-spin correlation function in time it falls off following a power law).

2). The Ginzburg-Landau level means that the superconductivity is directly described by a charge-$2e$ scalar field, the order parameter, ignoring the electronic origin. A truly microscopic theory, like the BCS theory, starts from electrons and phonons and derive the Ginzburg-Landau theory from there.

This post imported from StackExchange Physics at 2015-12-26 18:06 (UTC), posted by SE-user Meng Cheng
answered Dec 26, 2015 by Meng Cheng (40 points) [ no revision ]
Thanks for the answer, particularly the Kondo one is helpful. However it's still not clear how can one draw analogy between these things and AdS/CFT. I'll wait for some AdS/CFT people to answer.

This post imported from StackExchange Physics at 2015-12-26 18:06 (UTC), posted by SE-user Jon Snow

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights