Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,852 answers , 20,624 comments
1,470 users with positive rep
501 active unimported users
More ...

Eikonal equation and double null coordinates

+ 1 like - 0 dislike
54 views

I"m trying to understand the exact/technical link between the Eikonal equation and a double-null form of the metric (if such a direct link even exists). R. Wald, in his "General Relativity", doesn't say anything about it.

A function $f$ satisfies (per definition) the Eikonal equation if

$g(\nabla f,\nabla f)=0$

i.e. the gradient field $\nabla f$ is a null vector field.

On the other hand, a metric $g$ has double-null coordinates $(u,v)$ if $g=h+F\dot dudv$ (i.e. no $du^{2}$ and $dv^{2}$ terms appear).

I was wondering if there is a direct link between this function $f$ and the metric double null form?

Thank you for any hints.

This post imported from StackExchange MathOverflow at 2015-12-17 17:23 (UTC), posted by SE-user GregVoit
asked Oct 20, 2015 in Theoretical Physics by GregVoit (115 points) [ no revision ]
retagged Dec 17, 2015
You mean, besides the fact that the coordinate functions $u$ and $v$ by definition solves the eikonal equation?

This post imported from StackExchange MathOverflow at 2015-12-17 17:23 (UTC), posted by SE-user Willie Wong
@WillieWong yes, that's what I meant. At the first glance, they look like they might be more like the same thing written in a slightly different form, but I was wondering if there is more to it

This post imported from StackExchange MathOverflow at 2015-12-17 17:23 (UTC), posted by SE-user GregVoit

1 Answer

+ 2 like - 0 dislike

Per Willie's answer, locally this is the same thing. The global situation is, predictably, very different. I don't know anything specifically about the eikonal equation, but I do know about global solutions to the eikonal inequality $g(\nabla f, \nabla f)\leq 0$ (self plug: http://arxiv.org/abs/1412.5652).

Long story short: global solutions to the eikonal inequality will only exist if the Lorentzian distance is finite. This imposes conditions on the causal structure as well as the conformal class of the metric. My guess, and this is really only a guess, is that global solutions of the eikonal equation will require finiteness of the Lorentzian distance plus some extra condition on the causal structure.

If you happen to be working with globally hyperbolic manifolds then the global existence is trivial.

This post imported from StackExchange MathOverflow at 2015-12-17 17:23 (UTC), posted by SE-user Ben Whale
answered Nov 30, 2015 by Ben Whale (20 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...