Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,853 answers , 20,624 comments
1,470 users with positive rep
501 active unimported users
More ...

How to calculate radiative transition rate of exciton in a quantum dot with specific dimension?

+ 2 like - 0 dislike
54 views

I am writing rate equations for a nanophotonic system including three quantum dots. I need to calculate that radiative transition rates of exciton in ground state in those quantum dots. In the paper named "Dynamics of ONF-Based Three-QD Nanophotonic AND Gates at Finite Temperatures", table1, there are the exact numbers for radiative transition rates but it is not clear how it is calculated! Does anyone here know it?


This post imported from StackExchange Physics at 2015-11-02 22:23 (UTC), posted by SE-user aidin s

asked Dec 14, 2012 in Theoretical Physics by aidin s (10 points) [ revision history ]
edited Nov 2, 2015 by Dilaton
This seems like an interesting question, but that paper appears to be behind a paywall. It will be hard for anyone w/o a IEEE membership to deal with the question, and it won't be helpful for others visiting this site in the future. Could you add a basic description of the system and add a snippet of this mythical "table 1" to your question?

This post imported from StackExchange Physics at 2015-11-02 22:23 (UTC), posted by SE-user DarenW
That table just shows the radiative transition rate of exciton for QD1, QD2 and QD3 having 1e9, 2.83e9 and 8e9 (1/s).

This post imported from StackExchange Physics at 2015-11-02 22:23 (UTC), posted by SE-user aidin s
Generally, with quantum systems whose quantum states are understood, and overlap integrals (aka matrix elements) can be computed, radiative transistions can be caculated with Fermi's Golden Rule. What is your level of familiarity with this?

This post imported from StackExchange Physics at 2015-11-02 22:23 (UTC), posted by SE-user DarenW
I computed energy levels of exciton in cubic quantum dot but it seems I should compute hamiltonian to be abe to use fermi golden rule. Is it right?

This post imported from StackExchange Physics at 2015-11-02 22:23 (UTC), posted by SE-user aidin s

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOve$\varnothing$flow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...