• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,079 questions , 2,229 unanswered
5,348 answers , 22,758 comments
1,470 users with positive rep
819 active unimported users
More ...

  Hidden symmetries and QCD (edited: hidden symmetries and experimental prediction of anomalous processes rates)

+ 4 like - 0 dislike

What are hidden symmetries in QCD? Are introducing them natural in context of QCD, or we need to modify QCD?

An edit. It seems that I've understood applications of hidden symmetries (HS) conception in QCD, and the question about them is changed. First I'll briefly explain applications of HS in QCD, and after that I''ll reformulate the question.

Description of vector mesons in QCD sigma model through hidden symmetries

Suppose we have QCD sigma model (in other words - chiral perturbation theory), in which the basic object is matrix of pseudoscalar goldstone bosons $U$. It is transformed as $U \to e^{i\epsilon_{L}}Ue^{-i\epsilon_{R}}$ under global chiral transformations generated by $\left[U_{L}(3)\times U_{R}(3)\right]_{\text{global}}$ QCD group (here I don't write about anomaly effects), and sigma model action is invariant under this transformations. Improved by Wess-Zumino term (which violates some extra symmetries which are present in sigma model, but are absent in QCD fundamental theory; in fact WZ term generates all anomaly effects of QCD), this model describes correctly all processes involved only pseudoscalar mesons, SM gauge bosons and bounded states with half-integer spin (like nucleons and Delta-isobars), which arise as sigma model topological solutions called skyrmions.

But there isn't description of vector and axial-vector mesons in this model, so for being the correct low-energy theory of hadronic processes it has to be expanded. In early 80th people've realized how to include systematic description of vector mesons in sigma model. They have seen that $U$ can be realized through product
\tag 1 U \equiv \zeta_{L}^{\dagger}\zeta_{M}\zeta_{R},
where transformation laws of matrices $\zeta_{L/R/M}$ are
\zeta_{L} \to G_{L/R}(x)g_{L/R}\zeta_{L/R}, \quad \zeta_{M} \to G_{L}(x)\zeta_{M}G_{R}^{\dagger}(x),

and $g_{L/R} \in U_{L/R}(3), G_{L/R} \in \hat{U}_{L/R}(3)$; $\hat{U}_{L}(3)\times \hat{U}_{R}(3)$ is local symmetry. In fact, $(1)$ isn't transformed under $\hat{U}_{L}(3)\times \hat{U}_{R}(3)$, so that this symmetry is called "hidden". We can now write down the most general action which contains $\hat{A}_{L/R}, \zeta_{L/R/M}$, where $\hat{A}_{L/R}$ are gauge fields associated with hidden symmetry.

The next step is the primary idea of hidden local symmetry approach in QCD. We fix "hidden" symmetry gauge so that $\zeta_{L/R} = e^{\pm i\frac{\Pi}{f_{\pi}}}, \zeta_{M} = 1$, where $\Pi$ denotes the matrix of pseudoscalar mesons, and say that hidden symmetry gauge fields $a_{L/R}$ in this gauge have quantum numbers of vector and axial-vector mesons. This breaks down the "hidden" symmetry, and the lagrangian becomes to be functional only of $U, a_{L/R}$. We then say that mass terms for $a_{L/R}$ are generated by Higgs mechanism and kinetic terms arise due to quantum fluctuations. Finally, if we want to integrate out $a_{L/R}$ fieds in the limit of their large masses, then we turn back to the initial sigma model. This provides the following statement: "linear" model with "hidden" symmetry $[U_{L}(3)\times U_{R}(3)]_{\text{global}}\times[\hat{U}_{L}(3)\times \hat{U}_{R}(3)]_{\text{local}}$ is gauge equivalent to nonlinear sigma model based on spontaneously broken symmetry $[U_{L}(3)\times U_{R}(3)]_{\text{global}}/U_{V}(3)$.

The question

It can be shown that introducing the vector mesons via hidden symmetry approach "almost" coincide with introducing them as background gauge fields with quantum numbers of vector and axial vector mesons in terms of minimally broken chiral gauge symmetries (masses of background gauge fields break this local symmetry); the last method is called "Massive Yang-Mills". Thus we may write down the full chiral invariant lagrangian which contains information about vector, pseudovector and pseudoscalar mesons, SM gauge bosons and half-integer spin hadrons.

The question is about the description of some anomalous processes in this model. The topic of question can be demonstrated on case of famous anomalous $\pi^{0} \to 2\gamma$ process. The term in lagrangian $\frac{N_{c}e^{2}}{48 \pi^{2} f_{\pi}}\pi^{0} F_{EM} \wedge F_{EM}$ which describes this process is generated by $U_{EM}(1)$ gauging of Wess-Zumino term. Corresponding matrix element gives amplitude of $\pi^{0} \to 2\gamma$ process with high accuracy in compare with experimental data. However, if we include vector mesons, then process $\pi^{0} \to \rho^{0}\omega^{0}\to 2\gamma$ will also give contribution, and it seems that the theory will give incorrect predictions (full decay width will be larger than experimental decay width). So, in general, is it true that theory has problems with description of such anomalous processes, or I'm wrong?

asked Oct 20, 2015 in Theoretical Physics by NAME_XXX (1,060 points) [ revision history ]
edited Oct 24, 2015 by NAME_XXX

In what context did you see the usage of "hidden symmetries"?

In context that nonlinear sigma model with $G/H$ group is gauge equivalent to $G_{\text{global}}\times H_{\text{local}}$ linear model, so that $H_{\text{local}}$ is called hidden symmetry.

@Name_XXX interesting! If you could explain this context in the question itself too, it would probably get more positive attention in the form of votes and answers than it currently has.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights