Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,851 answers , 20,616 comments
1,470 users with positive rep
501 active unimported users
More ...

String Field Theory and AdS/CFT

+ 2 like - 0 dislike
103 views

I am a PhD student and I am choosing the topic to work on in the graduate school. I am interested in various non-perturbative aspects of String Theory. Does anybody know if there were any attempts to generalize AdS/CFT to the case of String Field Theory instead of usual low-energy description involving SUGRA fields on the "gravity" side? If no, what the problem with it?


This post imported from StackExchange Physics at 2015-09-19 17:38 (UTC), posted by SE-user Andrew Feldman

asked Sep 14, 2015 in Theoretical Physics by Andrey Feldman (600 points) [ revision history ]
edited Sep 19, 2015 by Dilaton

1 Answer

+ 1 like - 0 dislike

Independently of the AdS/CFT correspondence, string field theory becomes problematic for closed strings. Closed string dynamics is the stringy extension of quantum gravity which is really different from a local quantum field theory.

On the other hand, open string dynamics is a stringy tower extension of Yang-Mills theory, so it preserves its proximity to local quantum field theory.

Consequently, all the examples of consistent string field theories that "really seem to work" are only good for calculating scattering amplitudes with open string external states. The closed string intermediate states are automatically included but the closed string external states and the corresponding fields are not included.

The consistent string field theories include Witten's cubic open string field theory (SFT of the Chern-Simons type) and the non-polynomial boundary string field theory (BSFT). Both focus on open string external states. Both of them seem simpler for bosonic string theory. The extension to the superstring case is "more non-polynomial" but the required added difficulties seem surmountable.

There is a general, non-stringy reason why closed string dynamics – and its massless sector, the quantum gravity – is unlikely to be described as a local quantum field theory. The reason is that quantum gravity can't be "quite" local. There are various reasons for that. For example, the Hawking radiation must be able to get the information out of the black hole interior so it violates the locality. No "closed string field theory" could achieve such a result.

One should point out one more problematic assumption included in the question. Even though string field theory was believed to be relevant as a nonperturbative definition of string theory (much like lattice QCD may be used as a non-perturbative definition of QCD), it turned out not to be the case. As we understand it today, string field theory is just another formalism to calculate the scattering amplitudes as perturbative expansions. Perhaps it may make off-shell Green's functions more accessible than the conventional, e.g. first-quantized approaches to string theory; but it doesn't make the observables beyond the perturbative expansions more accessible.

In particular, the strong coupling limits such as M-theory or the S-dualities and string-string dualities have never been derived from string field theory and they probably cannot be derived from string field theory. String field theory is a formalism to get the result as power law expansions – and go "slightly" beyond those in the sense that string field theory is extremely good for studying various states of D-branes (it's been great to study the tachyon condensation on D-branes and the confirmation of Sen's hypotheses about these tachyons). They're nonperturbative objects (infinitely heavy ones in the weakly coupled limit) but all of their properties are encoded in perturbative open string dynamics.

To understand string theory nonperturbatively, one has to use different tools than string field theory, such as matrix string theory (a variation of the BFSS matrix theory optimized for type IIA or heterotic HE string theory), a subject I co-discovered, or AdS/CFT itself. Matrix string theory is a good exact definition of type IIA (or some similar) string theory in the flat Minkowski space for any value of the coupling constant and one can prove that for a very small coupling constant, it reduces to the usual perturbative rules (while it has the 11D limit for very strong couplings). There's no known way to "deform" the matrix string theory definition to a general background, e.g. an AdS background. Quite generally, such nonperturbative definitions only allow specific enough superselection sectors (demand some particular asymptotic conditions in the spacetime).

Similarly, AdS/CFT may help one to define string theory in the AdS (instead of the flat backgrounds of matrix theory) nonperturbatively exactly because the bulk AdS string theory is equivalent to a boundary CFT and this boundary CFT may arguably be defined in a nonperturbative way, e.g. by some lattice gauge theory definition (when some problems with SUSY, fermion doubling on the lattice etc. are solved, which seems possible).

So the experts' opinions – the summary of existing literature – is that string field theory isn't helpful for obtaining a "more nonperturbative" perspective into the structure of string theory, whether it's in the AdS background or any other background. There may be a loophole that everyone has overlooked but you should be warned that the goal of the project you are outlining seems to contradict at least some generally believed modern lore about string field theory.

There is still a lot of perturbative stringy physics that may be seen both in the boundary and bulk side of the AdS/CFT correspondence. The BMN (Berenstein-Maldacena-Nastase) pp-wave limit of the AdS/CFT correspondence is a good place to start to investigate those. There are also known dual descriptions of the bulk wrapped D-brane states (Witten) and other things. But none of those seems to become more comprehensible in the language of a string field theory – there is really no good string field theory one could reliably use for the bulk at all.

This post imported from StackExchange Physics at 2015-09-19 17:38 (UTC), posted by SE-user Luboš Motl
answered Sep 14, 2015 by Luboš Motl (10,248 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...