Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,851 answers , 20,616 comments
1,470 users with positive rep
501 active unimported users
More ...

Physical derivation and applications of the K.H.Mayer`s integrality theorem

+ 3 like - 0 dislike
220 views

In a previous post   http://www.physicsoverflow.org/24965/supersymmetric-derivation-integrality-differentiable-manifolds  a piece of  the K.H.Mayer`s integrality theorem was considered and its heterotic-supersymmetric derivation was presented.  In this post we consider the full K.H.Mayer`s integrality theorem which reads: (originally in German, please look below the English translation)

English translation:

A very important special case of the K.H.Mayer`s integrality theorem reads (Elliptic Symbols, Christian Bär)

My questions are:

1. How to derive  the K.H.Mayer`s integrality theorem using Heterotic-Supersymmetric quantum mechanics?

2. Do you know physical applications  of the K.H.Mayer`s integrality theorem?

asked Aug 22, 2015 in Theoretical Physics by juancho (860 points) [ revision history ]
edited Aug 26, 2015 by juancho

4 Answers

+ 3 like - 0 dislike

Physical application of the K.H.Mayer`s integrality theorem:  Gravitational anomaly for axion strings.

The axion string configuration breaks down the $SO(3,1)$ local Lorentz symmetry to $SO(1,1)×SO(2)$; where  $SO(1,1)$  acts on the tangent bundle to the string world-sheet denoted $T\Sigma^2$  and $SO(2)$ acts as gauge group on the normal bundle to the string world-sheet denoted $N$.

Then,  K.H.Mayer`s integrality theorem for  a normal bundle $N$ with  structure group $SO(2)$ takes the form

$$2M(N)\hat{A}(T\Sigma^2)$$

The total gravitational anomaly of the fermion zero modes living in the world-sheet of the axion string  is given by descent from

$$(-\frac{1}{2})[2M(N)\hat{A}(T\Sigma^2)]_{4-form}$$

In terms of Pontrjagin classes the Mayer class is given by

$$M=1+\frac{1}{8}\,p_{{1}}+{\frac {1}{96}}\,p_{{2}}+{\frac {1}{384}}\,{p_{{1}}}^
{2}+{\frac {1}{960}}\,p_{{3}}+{\frac {1}{3840}}\,p_{{1}}p_{{2}}+{
\frac {1}{46080}}\,{p_{{1}}}^{3}+...$$

In terms of Pontrjagin classes the Dirac genus is given by

$$\hat{A}=1-\frac{1}{24}\,p_{{1}}-{\frac {1}{1440}}\,p_{{2}}+{\frac {7}{5760}}\,{p_{{1
}}}^{2}-{\frac {1}{60480}}\,p_{{3}}+{\frac {11}{241920}}\,p_{{1}}p_{{2
}}-{\frac {31}{967680}}\,{p_{{1}}}^{3}+...$$

Then we have

$$(-\frac{1}{2})[2M(N)\hat{A}(T\Sigma^2)]_{4-form}=-[(1+\frac{1}{8}\,p_{{1}}(N))(1-\frac{1}{24}\,p_{{1}}(T\Sigma^2))]_{4-form}$$

which is reduced to

$$I^{zeromode} = \frac{1}{24}\,p_{{1}}(T\Sigma^2)-\frac{1}{8}\,p_{{1}}(N)$$

and it is the equation (136) on page 40 of http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

Now, we consider that there is a gravitational inflow contribution to the anomaly for the axion string given by the descent from

$$I^{inflow} =\alpha p_1(TM)$$

where $\alpha$ is constant to be determined and

$$TM \mid _{\Sigma^2} = T\Sigma^2   \oplus  N$$

Then we have that

$$I^{inflow} =\alpha p_1(TM)=\alpha p_1(T\Sigma^2   \oplus  N)=\alpha(p_1(T\Sigma^2 )+p_1(N))\\=\alpha p_1(T\Sigma^2 )+\alpha p_1(N)$$

According with all these results we derive that

$$I^{inflow}+I^{zeromode}=\alpha p_1(T\Sigma^2 )+\alpha p_1(N)+\frac{1}{24}\,p_{{1}}(T\Sigma^2)-\frac{1}{8}\,p_{{1}}(N)$$

which is reduced to

$$I^{inflow}+I^{zeromode}=(\alpha +\frac{1}{24})p_1(T\Sigma^2 )+(\alpha -\frac{1}{8} )p_1(N)$$

In order to cancel  the tangent bundle anomaly we demand that

$$\alpha +\frac{1}{24} = 0$$

which is equivalent to $\alpha  = - \frac{1}{24} $.  Using this value of $\alpha$ we obtain

$$I^{inflow}+I^{zeromode}= -\frac{1}{6}p_1(N)$$

and it is the equation (137) on page 40 of http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

Also we obtain

$$I^{inflow} = - \frac{1}{24} p_1(T\Sigma^2 )- \frac{1}{24} p_1(N) = - \frac{1}{24} p_1(TM)$$

and it is the equation (133) on page 39 of http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

Finally, given that $p_1(N)= e^2(N)$, where $e(N)$ is the Euler class of the normal bundle; we rewrite the  uncanceled anomaly for the normal bundle as

$$I^{inflow}+I^{zeromode}= -\frac{1}{6}e^2(N)$$

answered Aug 22, 2015 by juancho (860 points) [ revision history ]
edited Aug 26, 2015 by juancho
+ 1 like - 0 dislike

Physical application of the K.H.Mayer`s integrality theorem:  Gravitational anomaly for fivebranes in M-theory.

The  M5-brane configuration breaks down the $D = 11$ local Lorentz symmetry $SO(10,1)$ to $SO(5,1)×SO(5)$; where  $SO(5,1)$ acts on the tangent bundle to the fivebrane world-volume denoted $TW$  and $SO(5)$ acts as gauge group on the normal bundle to the fivebrane world-volume denoted $N$.

Then,  the K.H.Mayer`s integrality theorem for  a normal bundle $N$ with  structure group $SO(5)$ takes the form

$$2^2M(N)\hat{A}(TW)$$

The total gravitational anomaly of the fermion zero modes living in the world-volume of the fivebrane  is given by descent from

$$(\frac{1}{2})[2^2M(N)\hat{A}(TW)]_{8-form}$$

In terms of Pontrjagin classes the Mayer class is given by

$$M=1+\frac{1}{8}\,p_{{1}}+{\frac {1}{96}}\,p_{{2}}+{\frac {1}{384}}\,{p_{{1}}}^
{2}+{\frac {1}{960}}\,p_{{3}}+{\frac {1}{3840}}\,p_{{1}}p_{{2}}+{
\frac {1}{46080}}\,{p_{{1}}}^{3}+...$$

In terms of Pontrjagin classes the Dirac genus is given by

$$\hat{A}=1-\frac{1}{24}\,p_{{1}}-{\frac {1}{1440}}\,p_{{2}}+{\frac {7}{5760}}\,{p_{{1
}}}^{2}-{\frac {1}{60480}}\,p_{{3}}+{\frac {11}{241920}}\,p_{{1}}p_{{2
}}-{\frac {31}{967680}}\,{p_{{1}}}^{3}+...$$

Note that

$$2^2M \left( N \right) =4+\frac{1}{2}\,p_{{1}} \left( N \right) +\frac{1}{24}\,p_{{2}}
 \left( N \right) +\frac {1}{96}p_{{1}} \left( N \right)^{2}$$

which coincides with the equation $(5.3)$ on page 31 of http://arxiv.org/pdf/hep-th/9610234v1.pdf    and with the equation $(155c)$  on page 45 of  http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

Then we have

$$(\frac{1}{2})[2^2M(N)\hat{A}(TW)]_{8-form}=$$

$$2[(1+\frac{p_{{1}}(N)}{8}+{\frac {p_{{2}}(N)}{96}}+{\frac {{p_{{1}}}(N)^
{2}}{384}})(1-\frac{p_{{1}}(TW)}{24}-{\frac {p_{{2}}(TW)}{1440}}+{\frac {7{p_{{1
}}}(TW)^{2}}{5760}})]_{8}$$

which is reduced to

$$I^{zeromode} = \frac{p_{{2}} \left( N \right)}{48} +{\frac {p_{{1}}
 \left( N \right) ^{2}}{192}}-{\frac {1}{96}}\,p_{{1}} \left( {\it
TW} \right) p_{{1}} \left( N \right) -$$

$${\frac {1}{720}}\,p_{{2}}
 \left( {\it TW} \right) +\frac {7}{2880}p_{{1}} (TW)^{2}$$

From other side, the  K.H.Mayer`s integrality theorem for  the tangent bundle $TW$ with  structure group $SO(8)$ takes the form

$$2^4M(TW)\hat{A}(TW)$$

The total gravitational anomaly of the chiral two-form living in the world-volume of the fivebrane  is given by descent from

$$(-\frac{1}{8})[2^4M(TW)\hat{A}(TW)]_{8-form}$$

Then we have

$$(-\frac{1}{8})[2^4M(TW)\hat{A}(TW)]_{8-form}=$$

$$-2[(1+\frac{p_{{1}}(TW)}{8}+{\frac {p_{{2}}(TW)}{96}}+{\frac {{p_{{1}}}(TW)^
{2}}{384}})\\(1-\frac{p_{{1}}(TW)}{24}-{\frac {p_{{2}}(TW)}{1440}}+{\frac {7{p_{{1
}}}(TW)^{2}}{5760}})]_{8}$$

which is reduced to

$$I_{A}= -{\frac {7}{360}}\,p_{{2}} \left( {\it TW} \right) +{\frac {1}{360}}
 p_{{1}} \left( {\it TW} \right) ^{2}$$

and it coincides with the equation $(5.4)$ on page 31 of  http://arxiv.org/pdf/hep-th/9610234v1.pdf      and with the equation $(148)$ on page 44  of  http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

Now, we consider that there is a gravitational inflow contribution to the anomaly for the M5-brane given by the descent from

$$I^{inflow}=a p_{{1}} \left( {{\it TM}}^{11} \right)  ^{2}+bp_{{2}}
 \left( {{\it TM}}^{11} \right)$$

where $a$ and $b$ are constants to be determined; and

$$TM^{11} \mid _{W} = TW  \oplus  N$$

It is well known that

$$p_{{1}} \left( {{\it TM}}^{11} \right) =p_{{1}} \left( {\it TW}\right) +p_{{1}} \left( N \right)$$

$$p_{{2}} \left( {{\it TM}}^{11} \right) =p_{{2}} \left( {\it TW} \right) +p_{{2}} \left( N \right) +p_{{1}} \left( {\it TW} \right) p_{{1}} \left( N \right)$$

Then we have

$$I^{inflow}=a \left( p_{{1}} \left( {\it TW} \right) +p_{{1}} \left( N \right)
 \right) ^{2}+b \left( p_{{2}} \left( {\it TW} \right) +p_{{2}}\left( N \right) +p_{{1}} \left( {\it TW} \right) p_{{1}} \left( N
 \right)  \right)$$

and it is reduced to

$$I^{inflow}=a p_{{1}} \left( {\it TW} \right) ^{2}+2\,ap_{{1}}
 \left( {\it TW} \right) p_{{1}} \left( N \right) +a  p_{{1}}
 \left( N \right)   ^{2}+$$

$$bp_{{2}} \left( {\it TW} \right) +bp_{
{2}} \left( N \right) +bp_{{1}} \left( {\it TW} \right) p_{{1}}
 \left( N \right)$$

According with all these results we derive that $I^{total}=I^{zeromode}+I_A+I^{inflow} $ is given by

$$I^{total}=\frac {1}{48}\,p_{{2}} \left( N \right) +{\frac {1}{192}} p_{{1}}
 \left( N \right) ^{2}-{\frac {1}{96}}\,p_{{1}} \left( {\it
TW} \right) p_{{1}} \left( N \right) - $$

$$\frac{1}{48}p_{{2}} \left( {\it TW}
 \right) +{\frac {1}{192}} p_{{1}} \left( {\it TW} \right) ^{2}+a p_{{1}} \left( {\it TW} \right) ^{2}+$$

$$2\,ap_{{1}} \left( {\it TW} \right) p_{{1}} \left( N \right) +ap_{{1}} \left( N \right) ^{2}+bp_{{2}} \left( {\it TW}
 \right) +$$

$$bp_{{2}} \left( N \right) +bp_{{1}} \left( {\it TW} \right)p_{{1}} \left( N \right)$$

In order to cancel  the tangent bundle anomaly we demand that $b=\frac{1}{48}$ and $a= -\frac{1}{192}$.  Then with these values we obtain

$$I^{inflow}=-\frac{1}{192} p_{{1}} \left( {{\it TM}}^{11} \right)  ^{2}+\frac{1}{48}p_{{2}}
 \left( {{\it TM}}^{11} \right)$$

which coincides with the equation $(5.5)$ on page 32 of http://arxiv.org/pdf/hep-th/9610234v1.pdf    and with the equation $(152)$  on page 44 of  http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

Finally we obtain

$$I^{total}=\frac{1}{24}\,p_{{2}} \left( N \right) $$

which coincides with the equation $(5.7)$ on page 32 of http://arxiv.org/pdf/hep-th/9610234v1.pdf    and with the equation $(159)$  on page 46 of  http://xxx.lanl.gov/pdf/hep-th/0509097.pdf

answered Aug 23, 2015 by juancho (860 points) [ revision history ]
edited Aug 23, 2015 by juancho
+ 1 like - 0 dislike

Physical application of the K.H.Mayer`s integrality theorem:  Anomaly for Heterotic $SO(32)$ Fivebrane.

The  Heterotic $SO(32)$ fivebrane configuration breaks down the D=10 local Lorentz symmetry $SO(9,1)$ to $SO(5,1)×SO(4)$; where  $SO(5,1)$ acts on the tangent bundle to the heterotic $SO(32)$ fivebrane world-volume denoted $TW$; and $SO(4)$ acts as gauge group on the normal bundle to the heterotic $SO(32)$ fivebrane world-volume denoted $N$.

Then,  the K.H.Mayer`s integrality theorem for  a normal bundle $N$ with  structure group $SO(4)$ produces the following two cohomological expressions

$$2^2M(N)\hat{A}(TW)$$

and

$$W_{4}(N)\hat{A}(N)^{-1}\hat{A}(TW)$$

From the original proof of the K.H.Mayer`s integrality theorem we have that

$$ch(S_{+}(N))+ch(S_{-}(N))= 2^2M(N)$$

and

$$ch(S_{+}(N))-ch(S_{-}(N))= W_{4}(N)\hat{A}(N)^{-1}$$

From these last equations we deduce that

$$ch(S_{+}(N))=\frac{1}{2} [2^2M(N)+ W_{4}(N)\hat{A}(N)^{-1}]$$

and

$$ch(S_{-}(N))=\frac{1}{2} [2^2M(N)-W_{4}(N)\hat{A}(N)^{-1}]$$

which are rewritten as

$$ch(S_{\pm}(N))=\frac{1}{2} [2^2M(N)\pm W_{4}(N)\hat{A}(N)^{-1}]$$

Now, we have that

$$W_{4}(N)\hat{A}(N)^{-1}= W_{{4}} \left( N \right) +\frac{1}{24}\,W_{{4}} \left( N \right) p_{{1}}
 \left( N \right)$$

$$M(N)=1+\frac{1}{8}\,p_{{1}}(N)+{\frac {1}{96}}\,p_{{2}}(N)+{\frac {1}{384}}\,{p_{{1}}}(N)^ {2}+....$$

Using these last equations we obtain

$$ch(S_{\pm}(N))=\frac{1}{2} [4(1+\frac{1}{8}\,p_{{1}}(N)+{\frac {1}{96}}\,p_{{2}}(N)+{\frac {1}{384}}\,{p_{{1}}}(N)^ {2})  \pm \\ (W_{{4}} \left( N \right) +\frac{1}{24}\,W_{{4}} \left( N \right) p_{{1}}
 \left( N \right))]$$

which is reduced to

$$ch(S_{\pm}(N))=2+\frac{p_{{1}}(N) \pm W_{{4}} \left( N \right) }{4}+\frac {p_{1}(N)^2+4p_{2}(N)\pm 4 W_{4} ( N )p_{1}(N)}{192}$$

and it is exactly the equation $(6)$ on page 4 of   http://arxiv.org/pdf/hep-th/9709012v1.pdf ; where  $W_4(N) = \chi(N)$, $S_{+}(N)$ is the spin bundle with positive chirality constructed from $N$ by using the spinor representation of $SO(4)$; and $S_{-}(N)$ is the spin bundle with negative chirality constructed from $N$ by using the spinor representation of $SO(4)$.

One first kind of chiral fermions that are living in the worldvolume of the heterotic $SO(32)$ fivebrane are called $\theta$-fermions and they belong to the $(4_{+},2_{+})$ representation of $SO(5,1) × SO(4)$. 

The total gravitational anomaly of the $\theta$-fermion zero modes living in the world-volume of the heterotic $SO(32)$  fivebrane  is given by descent from

$$I_{8}^{\theta}=\frac{1}{2}[\hat{A}(TW)ch(S_{+}(N))]_{8-form}$$

Using that

$$\hat{A}(TW)=1-\frac{1}{24}\,p_{{1}}(TW)-{\frac {1}{1440}}\,p_{{2}}(TW)+{\frac {7}{5760}}\,{p_{{1 }}}(TW)^{2}$$

and

$$ch(S_{+}(N))=2+\frac{p_{{1}}(N) + W_{{4}} \left( N \right) }{4}+\frac {p_{1}(N)^2+4p_{2}(N)+ 4 W_{4} ( N )p_{1}(N)}{192}$$

we obtain

$$I_{8}^{\theta}={\frac {7}{5760}} p_{{1}} \left( {\it TW} \right) ^{
2}+{\frac {1}{96}}\,p_{{2}} \left( N \right) +{\frac {1}{384}}p_{{1}} \left( N \right) ^{2}- $$

$${\frac {1}{1440}}\,p_{{
2}} \left( {\it TW} \right) -{\frac {1}{192}}\,p_{{1}} \left( {\it TW}
 \right) p_{{1}} \left( N \right) + $$

$${\frac {1}{96}}\,W_{{4}} \left( N
 \right) p_{{1}} \left( N \right) -{\frac {1}{96}}\,p_{{1}} \left( {
\it TW} \right) W_{{4}} \left( N \right)$$

Now, given that

$$TQ \mid _{W} = TW  \oplus  N$$

$$p_{{1}} \left( TQ \right) =p_{{1}} \left( {\it TW}\right) +p_{{1}} \left( N \right)$$

$$p_{{2}} \left( TQ \right) =p_{{2}} \left( {\it TW} \right) +p_{{2}} \left( N \right) +p_{{1}} \left( {\it TW} \right) p_{{1}} \left( N \right)$$

we deduce that

$$p_{{1}} \left( {\it TW} \right) =p_{{1}} \left( {\it TQ} \right) -p_{{1}} \left( N \right)$$

and

$$p_{{2}} \left( {\it TW} \right) =p_{{2}} \left( {\it TQ} \right) -p_{{
2}} \left( N \right) -p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
 \right) +  p_{{1}} \left( N \right) ^{2}$$

Then using these last equations we obtain

$$I_{8}^{\theta} =  {\frac {7}{5760}}p_{{1}} \left( {\it TQ} \right) ^{
2}-{\frac {1}{144}}\,p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
 \right) +{\frac {1}{120}}p_{{1}} \left( N \right) ^{2}+$$

$${\frac {p_{{2}} \left( N \right) }{90}}-{\frac {p_{
{2}} \left( {\it TQ} \right)}{1440}} +\frac{W_{{4}} \left( N \right) p_{{1}}
 \left( N \right)}{48} -{\frac {W_{{4}} \left( N \right) p_{{1}}\left( {\it TQ} \right)}{96}}$$

and it is exactly the equation $(8)$ on page 4 of   http://arxiv.org/pdf/hep-th/9709012v1.pdf .

The second kind of chiral fermions that are living in the worldvolume of the heterotic $SO(32)$ fivebrane are called $SU(2)$ gauginos or $\lambda$-fermions;  and they belong to the $(1,3,4_{-},2_{-})$ representation of $SO(32) × SU(2) × SO(5,1) × SO(4)$. 

The total gravitational anomaly of the $\lambda$-fermion zero modes living in the world-volume of the heterotic $SO(32)$  fivebrane  is given by descent from

$$I_{8}^{\lambda}=-\frac{1}{2}[\hat{A}(TW)ch(S_{-}(N))Tr(e^{iG})]_{8-form}$$

where $2\pi G$ is the $SU(2)$ curvature and $Tr$ is the trace in the adjoint representation $SU(2)$.

Using that

$$\hat{A}(TW)=1-\frac{1}{24}\,p_{{1}}(TW)-{\frac {1}{1440}}\,p_{{2}}(TW)+{\frac {7}{5760}}\,{p_{{1 }}}(TW)^{2}$$

$$ch(S_{-}(N))=2+\frac{p_{{1}}(N) -W_{{4}} \left( N \right) }{4}+\frac {p_{1}(N)^2+4p_{2}(N)- 4 W_{4} ( N )p_{1}(N)}{192}$$

$${\it Tr} \left( {{\rm e}^{{\it iG}}} \right) =3-\frac{1}{2}\,{\it Tr} \left( {
G}^{2} \right) +\frac{1}{24}\,{\it Tr} \left( {G}^{4} \right) $$

we obtain

$$I_{8}^{\lambda}=\frac{1}{16}p_{{1}} \left( N \right) {\it Tr} \left( {G}^{2} \right) -\frac{1}{48}
p_{{1}} \left( {\it TW} \right) {\it Tr} \left( {G}^{2} \right) -$$

$${\frac {1}{128}}p_{{1}} \left( N \right) ^{2}+{
\frac {1}{480}}\,p_{{2}} \left( {\it TW} \right) -{\frac {7}{1920}}\,
 p_{{1}} \left( {\it TW} \right)  ^{2}-$$

$$\frac{1}{32}p_{{2}}
 \left( N \right) +\frac{1}{32}W_{{4}} \left( N \right) p_{{1}} \left( N
 \right) -\frac{1}{32}p_{{1}} \left( {\it TW} \right) W_{{4}} \left( N
 \right) - $$

$$\frac{1}{24}{\it Tr} \left( {G}^{4} \right) -\frac{1}{8}W_{{4}} \left( N
 \right) {\it Tr} \left( {G}^{2} \right) +{\frac {1}{64}}\,p_{{1}}
 \left( {\it TW} \right) p_{{1}} \left( N \right)$$

Using again

$$p_{{1}} \left( {\it TW} \right) =p_{{1}} \left( {\it TQ} \right) -p_{{1}} \left( N \right)$$

and

$$p_{{2}} \left( {\it TW} \right) =p_{{2}} \left( {\it TQ} \right) -p_{{
2}} \left( N \right) -p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
 \right) +  p_{{1}} \left( N \right) ^{2}$$

we obtain

$$I_{8}^{\lambda}={\frac {1}{12}}p_{{1}} \left( N \right) {\it Tr} \left( {G}^{2} \right) -{\frac {1}{48}}
{\it Tr} \left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) -{\frac {1}{40}}
p_{{1}} \left( N \right) ^{2}+$$

$${\frac {1}{480}}\,p_{
{2}} \left( {\it TQ} \right) -{\frac {1}{30}}p_{{2}} \left( N \right) +{\frac {1}{30}}p_
{{1}} \left( N \right) p_{{1}} \left( {\it TQ} \right) -$$

$${\frac {7}{
1920}}p_{{1}} \left( {\it TQ} \right) ^{2}+{\frac {1}{16}}W_
{{4}} \left( N \right) p_{{1}} \left( N \right) -{\frac {1}{32}}W_{{4}} \left(
N \right) p_{{1}} \left( {\it TQ} \right) -$$

$${\frac {1}{24}}{\it Tr} \left( {G}^{
4} \right) -{\frac {1}{8}}W_{{4}} \left( N \right) {\it Tr} \left( {G}^{2}
 \right)$$

and it is exactly the equation $(10)$ on page 4 of   http://arxiv.org/pdf/hep-th/9709012v1.pdf .

The third kind of chiral fermions that are living in the worldvolume of the heterotic $SO(32)$ fivebrane are called $\psi$-fermions;  and they belong to the $(32,2)$  representation of $SO(32)×SU(2)$. 

The total gravitational anomaly of the $\psi$-fermion zero modes living in the world-volume of the heterotic $SO(32)$  fivebrane  is given by descent from

$$I_{8}^{\psi}=\frac{1}{2}[\hat{A}(TW)Tr(e^{iF})Tr(e^{iG})]_{8-form}$$

where $2\pi G$ is the $SU(2)$ curvature,  $2\pi F$ is the $SO(32)$ curvature and $tr$ is the trace in the fundamental representation.

Using that

$$\hat{A}(TW)=1-\frac{1}{24}\,p_{{1}}(TW)-{\frac {1}{1440}}\,p_{{2}}(TW)+{\frac {7}{5760}}\,{p_{{1 }}}(TW)^{2}$$

$${\it tr} \left( {{\rm e}^{{\it iG}}} \right) =2-\frac{1}{2}\,{\it tr} \left( {
G}^{2} \right) +\frac{1}{24}\,{\it tr} \left( {G}^{4} \right) $$

$${\it tr} \left( {{\rm e}^{{\it iF}}} \right) =32-\frac{1}{2}\,{\it tr} \left( {
F}^{2} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right) $$

we obtain

$$I_{8}^{\psi}= -\frac{1}{45}\,p_{{2}} \left( {\it TW} \right) +{\frac {7}{180}}p_{{
1}} \left( {\it TW} \right) ^{2}+\frac{2}{3}\,{\it tr} \left( {G}^{4}
 \right) +$$

$$\frac{1}{48}\,p_{{1}} \left( {\it TW} \right) {\it tr} \left( {F}^{2
} \right) +\frac{1}{8}\,{\it tr} \left( {G}^{2} \right) {\it tr} \left( {F}^{2
} \right) +\frac{1}{3}\,p_{{1}} \left( {\it TW} \right) {\it tr} \left( {G}^{2
} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right)$$

Using again

$$p_{{1}} \left( {\it TW} \right) =p_{{1}} \left( {\it TQ} \right) -p_{{1}} \left( N \right)$$

and

$$p_{{2}} \left( {\it TW} \right) =p_{{2}} \left( {\it TQ} \right) -p_{{
2}} \left( N \right) -p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
 \right) +  p_{{1}} \left( N \right) ^{2}$$

we have that

$$I_{8}^{\psi}=-\frac {1}{45}\,p_{{2}} \left( {\it TQ} \right) +\frac {1}{45}\,p_{{2}} \left( N
 \right) -\frac {1}{18}\,p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
 \right) +{\frac {1}{60}}p_{{1}} \left( N \right) ^{2}+$$

$${\frac {7}{180}}p_{{1}} \left( {\it TQ} \right) ^{2}+\frac {2}{3}\,{\it tr} \left( {G}^{4} \right) +\frac{1}{48}\,{\it tr}
 \left( {F}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac {1}{48}\,{\it tr
} \left( {F}^{2} \right) p_{{1}} \left( N \right) +$$

$$\frac {1}{8}\,{\it tr}
 \left( {G}^{2} \right) {\it tr} \left( {F}^{2} \right) +\frac {1}{3}\,{\it tr}
 \left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{3}\,{\it tr}
 \left( {G}^{2} \right) p_{{1}} \left( N \right) +\frac{1}{24}\,{\it tr}
 \left( {F}^{4} \right)$$

and it is exactly the equation $(12)$ on page 5 of   http://arxiv.org/pdf/hep-th/9709012v1.pdf .

The total anomaly is $I_8 = I_8^{\theta}+I_8^{\lambda}+I_8^{\psi}$ and then we have

$$I_8=\frac{1}{12}\,W_{{4}} \left( N \right) p_{{1}} \left( N \right) +\frac{1}{48}\,{\it tr
} \left( {F}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{48}\,{\it
tr} \left( {F}^{2} \right) p_{{1}} \left( N \right) +$$

$$\frac{1}{3}\,{\it tr}
 \left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{3}\,{\it tr}
 \left( {G}^{2} \right) p_{{1}} \left( N \right) -\frac{1}{48}\,p_{{2}}
 \left( {\it TQ} \right) -\frac{1}{24}\,p_{{1}} \left( N \right) p_{{1}}
 \left( {\it TQ} \right) +$$

$${\frac {7}{192}}p_{{1}} \left( {
\it TQ} \right) ^{2}-\frac{1}{24}\,W_{{4}} \left( N \right) p_{{1}}
 \left( {\it TQ} \right) -\frac{1}{24}\,{\it Tr} \left( {G}^{4} \right) -\frac{1}{8}\,
W_{{4}} \left( N \right) {\it Tr} \left( {G}^{2} \right) +$$

$$\frac{1}{12}\,p_{{1}
} \left( N \right) {\it Tr} \left( {G}^{2} \right) -\frac{1}{48}\,{\it Tr}
 \left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) +\frac{2}{3}\,{\it tr}
 \left( {G}^{4} \right) +$$

$$\frac{1}{24}\,{\it tr} \left( {F}^{4} \right) +\frac{1}{8}\,{
\it tr} \left( {G}^{2} \right) {\it tr} \left( {F}^{2} \right)$$  

Now, using $Tr(G^2)=4tr(G^2)$ and $Tr(G^4)=16tr(G^4)$, we obtain

$$I_8=\frac{1}{12}\,W_{{4}} \left( N \right) p_{{1}} \left( N \right) -\frac{1}{24}\,p_{{1}}
 \left( N \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{24}\,W_{{4}}
 \left( N \right) p_{{1}} \left( {\it TQ} \right) +$$

$${\frac {7}{192}}p_{{1}} \left( {\it TQ} \right) ^{2}-\frac{1}{2}\,W_{{4}}
 \left( N \right) {\it tr} \left( {G}^{2} \right) +\frac{1}{4}\,{\it tr}
 \left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) +$$

$$\frac{1}{8}\,{\it tr}\left( {G}^{2} \right) {\it tr} \left( {F}^{2} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right) +\frac{1}{48}\,{\it tr} \left( {F}^{2} \right) p_{{1}} \left( {\it TQ} \right) -$$

$$\frac{1}{48}\,{\it tr} \left( {F}^{2} \right) p_{{1
}} \left( N \right) -\frac{1}{48}\,p_{{2}} \left( {\it TQ} \right)$$

and it is exactly the equation $(14)$ on page 5 of   http://arxiv.org/pdf/hep-th/9709012v1.pdf .

Finally the total anomaly is rewritten as

$$I_8 =[W_{{4}} \left( N \right) -\frac{1}{4}\,{\it tr} \left( {F}^{2} \right) -\frac{1}{2}\,p_{{1}} \left( {\it TQ} \right) ][\frac{1}{12}p_{1}(N)-\frac{1}{2}tr(G^2)-\frac{1}{24}p_{1}(TQ)] +$$

$${\frac {1}{64}}p_{{1}} \left( {\it TQ} \right)  ^{2}-\frac{1}{48}\,p_{{2}} \left( {\it
TQ} \right) +{\frac {1}{96}}\,{\it tr} \left( {F}^{2} \right) p_{{1}}
 \left( {\it TQ} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right)$$

and it is exactly the equation $(15)$ on page 5 of   http://arxiv.org/pdf/hep-th/9709012v1.pdf .

answered Aug 24, 2015 by juancho (860 points) [ revision history ]
edited Aug 28, 2015 by juancho
+ 1 like - 0 dislike

A proof of the K.H.Mayer`s integrality theorem using Heterotic-Supersymmetric quantum mechanics:

The first part of the Mayer integrality theorem is proved using the following effective lagrangian

$$L_{eff}=\frac{1}{2}[\dot{\xi}_{\mu}\dot{\xi}^{\mu}+i\lambda_{A}\dot{\lambda}^{A}+iR_{\mu \nu}\dot{\xi}^{\mu}\xi^{\nu}+F_{AB}\lambda^A\lambda^B]$$

This effective lagrangian can be rewritten as

$$L_{eff}= -\frac{1}{2}\xi^{\mu}[\partial_{\tau}^2\eta_{\mu \nu}+iR_{\mu \nu}\partial_{\tau}]\xi^{\nu}+\frac{1}{2}\lambda^{A}[i \partial_{\tau} \eta_{A B}+F_{A B}]\lambda^{B}$$

The Witten index for this heterotic Susy QM is given by

$${\it index}=\int_{M}\int_{APBC}\int_{PBC}{\rm e}^{-\int _{0}^{t}\!L_{{{\it eff}}} \left( \tau \right) {d\tau}}d\xi d\lambda dM={\it integer}$$

Then, computing the path integrals we obtain

$$\int_{APBC} e^{-\int _{0}^{t} \frac{1}{2}\lambda^{A}[i \partial_{\tau} \eta_{A B}+F_{A B}]\lambda^{B}  {d\tau}}{d\lambda}=\sqrt {{\it Det} \left( i \partial_{\tau} \eta_{A B}+F_{A B} \right) }=\\\sqrt {\prod _{i=1}^{s} \left( 4\,\prod _{n=0}^{ \infty } \left( 1+{\frac {{y_{{i}}}^{2}}{ \left( 2\,n+1 \right) ^{2}{ \pi }^{2}}} \right) ^{2} \right) }={2}^{s}\prod _{i=1}^{s}\cosh \left( \frac{y_{{i}}}{2} \right)$$

and

$$\int_{PBC} e^{-\int _{0}^{t}\frac{1}{2}\xi^{\mu}[\partial_{\tau}^2\eta_{\mu \nu}+iR_{\mu \nu}\partial_{\tau}]\xi^{\nu} {d\tau}} {d\xi}={\frac {1}{\sqrt {{\it Det} \left( \partial_{\tau}^2\eta_{\mu \nu}+iR_{\mu \nu}\partial_{\tau} \right) }}}\\={\frac {1}{\sqrt {\prod _ j \left( \prod _{n=1}^{\infty }(1+{\frac {{x_{{j}}}^{2}}{4{\pi }^{2}{n}^{2}} } )\right) ^{2} }}}=\prod _ j{\frac {\frac{x_{{j}}}{2}}{\sinh \left( \frac{x_{{j}}}{2} \right) }} = \hat{A}(M)$$

Using these results we derive that

$$\mathrm{index}=\int_{M} [\hat{A} \left( M \right) {2}^{s}\prod _{i=1}^{s}\cosh \left( \frac{y_{{i}}}{2} \right)]_{top-form} {dM} =\mathrm{integer}$$

The second part of the Mayer integrality theorem is proved using the following effective lagrangian

$$L_{eff}=\frac{1}{2}[\dot{\xi}_{\mu}\dot{\xi}^{\mu}+i\lambda_{A}\dot{\lambda}^{A}+iR_{\mu \nu}\dot{\xi}^{\mu}\xi^{\nu}+F_{AB}\lambda^A\lambda^B+F_{AB}\psi_{0}^A\psi_{0}^B]$$

This effective lagrangian can be rewritten as

$$L_{eff}= -\frac{1}{2}\xi^{\mu}[\partial_{\tau}^2\eta_{\mu \nu}+iR_{\mu \nu}\partial_{\tau}]\xi^{\nu}+\frac{1}{2}\lambda^{A}[i \partial_{\tau} \eta_{A B}+F_{A B}]\lambda^{B}+\frac{1}{2}F_{AB}\psi_{0}^A\psi_{0}^B$$

The Witten index for this heterotic Susy QM is given by

$${\it index}=\int_{M}\int\int_{PBC}\int_{PBC}{\rm e}^{-\int _{0}^{t}\!L_{{{\it eff}}} \left( \tau \right) {d\tau}}d\xi d\lambda d\psi_{0} dM={\it integer}$$

Then, computing the path integrals we obtain

$$\int_{PBC} e^{-\int _{0}^{t} \frac{1}{2}\lambda^{A}[i \partial_{\tau} \eta_{A B}+F_{A B}]\lambda^{B}  {d\tau}}{d\lambda}\int_{PBC} e^{-\int _{0}^{t} \frac{1}{2}F_{AB}\psi_{0}^A\psi_{0}^B  {d\tau}}{d\psi_{0}}=\\\sqrt {{\it Det} \left( i \partial_{\tau} \eta_{A B}+F_{A B} \right) }(\prod _{i=1}^{s} y_{i}^2)= \sqrt {\prod _{i=1}^{s} \left( y_{i}^2\,\prod _{n=1}^{ \infty } \left( 1+{\frac {{y_{{i}}}^{2}}{4 { \pi }^{2}n ^{2}}} \right) ^{2} \right) }={2}^{s}\prod _{i=1}^{s}\sinh \left( \frac{y_{{i}}}{2} \right)$$

and

$$\int_{PBC} e^{-\int _{0}^{t}\frac{1}{2}\xi^{\mu}[\partial_{\tau}^2\eta_{\mu \nu}+iR_{\mu \nu}\partial_{\tau}]\xi^{\nu} {d\tau}} {d\xi}={\frac {1}{\sqrt {{\it Det} \left( \partial_{\tau}^2\eta_{\mu \nu}+iR_{\mu \nu}\partial_{\tau} \right) }}}\\={\frac {1}{\sqrt {\prod _ j \left( \prod _{n=1}^{\infty }(1+{\frac {{x_{{j}}}^{2}}{4{\pi }^{2}{n}^{2}} } )\right) ^{2} }}}=\prod _ j{\frac {\frac{x_{{j}}}{2}}{\sinh \left( \frac{x_{{j}}}{2} \right) }} = \hat{A}(M)$$

Using these results we derive that

$$\mathrm{index}=\int_{M} [\hat{A} \left( M \right) {2}^{s}\prod _{i=1}^{s}\sinh \left( \frac{y_{{i}}}{2} \right)]_{top-form} {dM} =\mathrm{integer}$$

answered Aug 28, 2015 by juancho (860 points) [ revision history ]
edited Aug 31, 2015 by juancho

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysi$\varnothing$sOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...