# What do we take the functional determinant of in computing the effective action in the Background field method?

+ 3 like - 0 dislike
302 views

I have some schematic notes on computing the effective action and I would like someone to help me fill the gaps.

\begin{equation*}
\int{}\mathcal{D}\phi\,e^{-iS[\phi]}
\end{equation*}
employing the background field method we write
\begin{equation*}
\phi=\phi_0+\Delta\phi
\end{equation*}
so we have
\begin{equation*}
\int{}\mathcal{D}(\Delta\phi)\,e^{-iS[\phi_0+\Delta\phi]}
\end{equation*}
Taylor expanding around $\phi_0$

$$S[\phi_0+\Delta\phi]=S[\phi_0]+\int{}d^4x_1\,\frac{\delta{}S}{\delta\phi(x_1)}\Delta\phi(x_1)$$
$$+\frac{1}{2}\int{}d^4x_1d^4x_2\frac{\delta^2S}{\delta\phi(x_1)\delta\phi(x_2)}\Delta\phi(x_1)\Delta\phi(x_2)+$$
$$\frac{1}{3!}\int{}d^4x_1d^4x_2d^4x_3\frac{\delta^3S}{\delta\phi(x_1)\delta\phi(x_2)\delta\phi(x_3)}\Delta\phi(x_1)\Delta\phi(x_2)\Delta\phi(x_3)+\ldots$$
since $\phi_0$ satisfies the equations of motion the linear term in $\Delta\phi$ vanishes. Then we have

$$e^{-iS[\phi_0]}\int{}\mathcal{D}(\Delta\phi)e^{-i\frac{1}{2}\int{}d^4x_1d^4x_2\frac{\delta^2S}{\delta\phi(x_1)\delta\phi(x_2)}\Delta\phi(x_1)\Delta\phi(x_2)+\ldots}$$

from here on my notes neglect terms cubic,quartic... in $\Delta\phi$. Can anybody tell me why?.

Also, after this it is written
$$e^{-iS[\phi_0]}det(\ldots)$$
where the dots represent (I think) a functional determinant of something. Can anybody tell me what goes inside the determinant, and where this comes from?

+ 3 like - 0 dislike

Once you throw out terms higher than quadratic (this is just your approximating $\Delta \phi$ to be small), you get an integral of the sort

$\int d^nx \exp(-\frac{1}{2} x^T A x)$.

This is a Gaussian integral equal to $(2\pi)^{n/2} / \sqrt{det A}$.

answered Jun 27, 2015 by (1,925 points)

I would thank you a lot if you could please be more explicit on what goes exactly inside the determinant using the notation I have used.

@silvrfuck: To tell ''what goes exactly inside the determinant'' you should either say what is in your notes in place of the ..., or if the ... are in the notes themselves, what the author concludes from it.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysics$\varnothing$verflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.