Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,851 answers , 20,616 comments
1,470 users with positive rep
501 active unimported users
More ...

From String Frame to Einstein Frame for 10D supergravity

+ 2 like - 0 dislike
100 views

This question is related to but not answered in the post String frame and Einstein frame for a Dp-brane, so it should be treated as a separate question.

Beginning with the gravity action

$$S = \frac{1}{(2\pi)^7 l_s^8}\int d^{10}x \sqrt{-\gamma}\left[e^{-2\Phi}(R + 4(\nabla\Phi)^2) - \frac{1}{2}\left|F_{p+2}\right|^2\right]$$

in the string frame, I want to derive the action in the Einstein frame, which is

$$S = \frac{1}{(2\pi)^7 l_s^8 g_s^2}\int d^{10}x \sqrt{-g}\left[R - 4(\nabla\phi)^2 - \frac{1}{2}g_s^2 e^{(3-p)\phi/2}\left|F_{p+2}\right|^2\right]$$

where $e^{\Phi} = g_s e^{\phi}$, $g_{\mu\nu} = e^{-\phi/2}\gamma_{\mu\nu}$, and $|F_{p}|^2 = \frac{1}{p!}F_{\mu_1\mu_2\ldots\mu_p}F^{\mu_1\mu_2\ldots\mu_p}$.

I understand that

$$R_\gamma = e^{-\phi/2}\left[R_g - \frac{9}{2}\nabla^2\phi - \frac{9}{2}(\nabla\phi)^2\right]$$

(Note: the above expression for the Ricci scalar has been derived here: Curvature of Weyl-rescaled metric from curvature of original metric). The interpretation is that the derivative terms (gradient squared, and Laplacian) on the right hand side have been computed using the $g$ metric, and hence are "already" in Einstein frame form.

Now, I also understand that

$$\sqrt{-\gamma} = e^{5\phi/2}\sqrt{-g}$$

$$|F_{p+2}|^2_{\mbox{string frame}} = e^{-(p+2)\phi/2} |F_{p+2}|^2_{\mbox{Einstein frame}}$$

(for the particular normalization stated above) and

$$(\nabla\phi)^2_{\mbox{string frame}} = e^{-\phi/2}(\nabla\phi)^2_{\mbox{Einstein frame}}$$

but substituting all this into the first expression for the action still leaves behind the Laplacian term $\nabla^2\phi$, which does not appear in the (correct) expression for the string frame action.

What am I missing here?


This post imported from StackExchange Physics at 2015-04-13 10:40 (UTC), posted by SE-user leastaction

asked Apr 5, 2015 in Theoretical Physics by leastaction (425 points) [ revision history ]
edited Apr 13, 2015 by Dilaton
Integrate by parts?

This post imported from StackExchange Physics at 2015-04-13 10:40 (UTC), posted by SE-user Prahar
The action after these substitutions is $$S = \frac{1}{(2\pi)^7 l_s^8 g_s^2}\int d^{10}x\sqrt{-g}\left[R_g - \frac{9}{2}\nabla^2\phi - \frac{1}{2}|\nabla\phi|^2 - \frac{1}{2}e^{(3-p)\phi/2}g_s^2 |F_{p+2}|^2\right]$$ You're probably right about integration by parts, but I don't see how it kills the laplacian unless I have some wrong coefficients...

This post imported from StackExchange Physics at 2015-04-13 10:40 (UTC), posted by SE-user leastaction
Note that the Laplacian term is just a boundary term. However, I got the same result ^^, minus the Laplacian, which I discarded.

This post imported from StackExchange Physics at 2015-04-13 10:40 (UTC), posted by SE-user 0celo7

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOve$\varnothing$flow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...