Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,848 answers , 20,603 comments
1,470 users with positive rep
501 active unimported users
More ...

Reference request: Relation between $Sp(N)$, $Spin(N) $, $SU(N)$ groups and physics

+ 4 like - 0 dislike
158 views

I want to understand the relationship of the so common $SU(N)$ and $SO(N)$ groups in physics with the symplectic group which I think is the double cover of the first and the Spin groups $Spin(N)$.

Is there a good reference, mainly for physicists.


This post imported from StackExchange Physics at 2015-01-10 13:18 (UTC), posted by SE-user Marion

asked Jan 9, 2015 in Resources and References by Marion Edualdo (250 points) [ revision history ]
recategorized Jan 10, 2015 by Dilaton
The symplectic group is not a double cover of $SU(N)$. It is the spin group $Spin(N)$ which is a double cover of $SO(N)$.

1 Answer

+ 4 like - 0 dislike

I will give references to more general topics. The references, of a combination of them do include though all the information you ask for. I think that you can try to read Pierre Ramond's Group Theory; a Physicist's Survey where there is some information on the Weyl groups. Then, a very nice exposition is this book I recently found titled Lie Groups and Lie Algebras; A Physicists Perspective. Some nice information can be found on the blog post by Lubos on Exceptional Lie Groups.

Also, indeed $Spin(N)$ is the universal double cover of $SO(N)$ for $N \geq 3$ otherwise it is not universal. 

answered Jan 11, 2015 by conformal_gk (3,535 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...