# Physical interpretation of the rank of $SU(N)$ ?

+ 2 like - 0 dislike
545 views
I think I have understood that the group $SU(N)$ can be represented by $N\times N$ matrices with unit determinant, and why it has $N^2 -1$ generators. However I dont see why the rank of $SU(N)$ is $N-1$, how can this generally be proved? Also, why is it that the rank of $SU(N)$ gives the number of operators in the algebra that can simultaneously be diagonalized and what does it mean from a physics point of view?
asked Dec 30, 2014

+ 4 like - 0 dislike
The rank is the dimension of a maximal abelian subgroup (called the torus). In a matrix group, one torus is given by the diagonal matrices. For $SU(N)$, Since the determinant has to be one, there are $N-1$ free $U(1)$ parameters. It's easy to check that this is maximal.

It's also an easy theorem in linear algebra that two diagonalizable matrices can be simultaneously diagonalized iff they commute.

One can devise many physical situation where the rank matters. Suppose some adjoint matter gets a vev. Then the gauge field splits into a number of photons. The number is the rank.
answered Dec 30, 2014 by (1,925 points)
+ 2 like - 0 dislike
I understand the rank $N$ of a gauge group as the degrees of freedom of the fundamental representation of the gauge group. The easiest example is to consider the color group $SU(3)$ of the standard model and then the fundamental representation which is given by the quark wave function. Then, this is/transforms in the ${\bf{3}}$, and equivalently the anti quarks in the ${\bar{\bf{3}}}$, right? This indeed gives us the degrees of freedom. Similar argument holds for the adjoint representation.
answered Jan 4, 2015 by (95 points)
edited Jan 5, 2015

This only works for $SU(N)$ but not for $SO(n)$ with $n>2$.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.