Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,352 answers , 22,786 comments
1,470 users with positive rep
820 active unimported users
More ...

  Nature of separatrix in Fokker--Planck Hamiltonian with two degrees of freedom

+ 4 like - 0 dislike
938 views

Background The semiclassical (weak noise, small $D$) limit of the Fokker--Planck equation

$$\frac{\partial P}{\partial t}=D\frac{\partial^2 P}{\partial x^2}-\frac{\partial}{\partial x}(v(x) P)$$

can be described in terms of the classical Hamiltonian

$$H = p^2 +v(x) p$$

where $v(x)$ denotes the drift. This procedure is described in Graham and Tél, Journal of Statistical Physics, 35, 729 (1984), and the resulting Hamiltonian is called the Freidlin--Wentzell (FW) Hamiltonian (although I can't find where in their book Random perturbations of dynamical systems it is discussed).

My problem I am concerned with an example with two degrees of freedom, written in complex notation as

$$H=|p|^2+p(a z+bz^2)+\bar p(\bar a \bar z+\bar b\bar z^2),$$

with Poisson bracket

$$\{f,g\}=\frac{\partial f}{\partial z}\frac{\partial g}{\partial p} -\frac{\partial f}{\partial p}\frac{\partial g}{\partial z} +\frac{\partial f}{\partial \bar z}\frac{\partial g}{\partial \bar p} -\frac{\partial f}{\partial \bar z}\frac{\partial g}{\partial \bar p}.$$

In this case the complex drift velocity $v(z)=az+bz^2$ generates a Möbius transformation on $z$, with fixed points at $z=0,-a/2b$. Making the canonical transformation

$$\xi_1 = z+\frac{\bar p}{a+\bar a},\qquad \xi_2 = \bar p,$$

with $\{\xi_1,\bar \xi_2\}=1$, one finds that the quadratic part of the Hamiltonian ($b=0$) takes the form

$$ H_{b=0} = (a+\bar a) \text{Re}\,\xi_1 \bar \xi_2 + i(a-\bar a)\text{Im}\,\xi_1\bar\xi_2, $$

which reveals the fixed point at $z=0$ to be a focus-focus singularity. I believe this is a general feature of the FW Hamiltonian.

$\xi_1=0$, $\xi_2=0$ are the stable and unstable manifolds (which is which depends on the sign of $\text{Re}\, a$) in the vicinity of the origin. $\xi_2=0$ lies in the $p=0$ plane, corresponding to the drift under $v(z)$ that connects the two fixed points, while the $\xi_1=0$ manifold presumably connects to the other fixed point through $p\neq 0$, forming a heteroclinic cycle of order 2.

Can someone say something more about the nature of this separatrix? Is the system integrable (in which case a second conserved quantity would give us the separatrix immediately), or failing that, is the separatrix smooth?

Update The figure below shows some representative trajectories highly suggestive of a smooth separatrix. Here $a=-0.2+5i$ and $b=0.2$. The $z$-axis is $|p|$. Möbius drifts in the $p=0$ plane between the two fixed points are followed by excursions out of the plane. The focus-focus singularities are clearly visible.

Trajectories close to separatrix


This post imported from StackExchange MathOverflow at 2014-11-07 11:21 (UTC), posted by SE-user Austen

asked Oct 30, 2014 in Theoretical Physics by Austen (40 points) [ revision history ]
retagged Nov 9, 2014 by dimension10

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...