Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,786 comments
1,470 users with positive rep
820 active unimported users
More ...

  "weak" or "holographic" vielbein framings?

+ 5 like - 0 dislike
3574 views

Here I am going to ask if there is any work on field theories with "weak" metric structure exhibited not by vielbein fields on the tangent bundle, but by the analog kind of "viel+1-bein fields" on the direct sum of the tangent bundle with the trivial line bundle.

A vielbein field configuration on a manifold \(X\) is locally a choice of trivialization of the tangent bundle, and if it is also globally so then it is a choice of global parlallelism, a "framing". Traditionally in physics this receives attention in the corner of "teleparallel gravity", but this is not what I am after here.

In mathematics, notably in generalized cohomology,  a major role is played by the weaker concept of "stable framings" which are framings not necessarily of the tangent bundle \(TX\) itself, but of the sum of that with a trivial vector bundle of any rank. In between that very weak concept and the ordinary strong concept of framing (global parallelism) is that of "\((d+1)\)-framing", a choice of trivialization of \(TX \oplus \underline{\mathbb{R}}\) on a \(d\)-dimensional manifold \(X\).

There is some sense in which a \((d+1)\)-framing is analogous to a conformal structure. A conformal structure, too, may be thought of as given by a local vielbein field but relaxing its conditions a bit -- by allowing a common rescaling of all the beins in the vielbein. Here for a \((d+1)\)-framing we don't have rescalings, but we have the extra freedom of moving around one extra "bein" and of rotating all the "beins" in one more dimension than the manifold has.

A more precise way to say how \((d+1)\)-framings play a role analogous to that of conformal structures in conformal field theory is the cobordism hypothesis-theorem, which says among many other things that if we produce a Chern-Simons-like topological field theory of dimension \((d+1)\),then its Wess-Zumino-Witten-like holographic dual theory in dimension \(d\) has a flat bundle of "conformal blocks" on the moduli space of the "\((d+1)\)-structures" on its spacetime \(X\). If the dual CS theory is fully anomaly-free in that it is framed, then this means that the \(d\)-dimensional boundary theory has a flat bundle of "conformal blocks" on the moduli space of its \((d+1)\)-framings. (More in this MO question which, it turns out, has a positive answer.)

Has any field theory of such kind ever surfaced anywhere in the physics literature? Maybe in discussion of generalized WZW-like theories or in discussion of variants of AdS/CFT. Or elsewhere?

asked Sep 11, 2014 in Theoretical Physics by Urs Schreiber (6,095 points) [ revision history ]
edited Sep 11, 2014 by Urs Schreiber

Should this be tagged ``reference-request'' or the analogue of the same here? I find the editing process sort of confusing, probably because I did not sleep well last night.

Very nice question, Urs! I have been wondering about similar things recently too, but in the context of TQFTs with bordism invariant actions. My geometric structures are all twisted spin structures, which are the same as their stable variants, but I have been pondering the difference between the Madsen-Tillman spectrum through which invertible TQFTs factor and the Thom spectrum which begets the bordism groups. Anyway, I'll let you know if I have any thoughts about your question. : )

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...