Say we want to compute the Coleman-Weinberg potential at 2 loops.

The general strategy as we know is to expand the field $\phi$ around some background classical field $\phi \rightarrow \phi_b + \phi$, and do a path integral over the quantum part of the field, $\phi$.

We can retrieve the effective action by doing a path integral, something like eq.42 in this reference.

There are 2 ways to do this at 1 loop, we can either evaluate a functional determinant or do the classic Coleman-Weinberg thing where we sum up all diagrams we get by inserting any number of background fields $\phi_b^2$ into the loop integral. This is eq. (56) of that same reference again.

My question is, why do we not need to do this resummation over background field insertions at 2 loops? For example, in this (quite standard) reference, as well as in chapter 11 in Peskin and Schroeder, the authors seem to claim that the 2 loop contribution to the path integral are simply the "rising sun" and "figure 8" vacuum diagrams, and no summing over classical field insertions is even mentioned.

What am I missing?

EDIT:

To give some more details, in perturbation theory, each diagram contributing to the path integral is spacial integral of some functional derivative acting on the free field path integral with a source:
the loop diagram with n insertions of external field $\phi_b$ is the term:
$$\left( \phi_b^2 \int dx \left( \frac {\delta}{\delta J(x)}\right)^2 \right)^n Z_0[J]$$

The 2 loop figure 8 is

$$\int dx \left( \frac {\delta}{\delta J(x)}\right)^4 Z_0[J]$$

The 2 loop diagrams that it seems like the papers cited above are excluding are contributions like

$$\left( \phi_b^2 \int dx \left( \frac {\delta}{\delta J(x)}\right)^2 \right)^n\int dx \left( \frac {\delta}{\delta J(x)}\right)^4 Z_0[J]$$

It seems to me that these terms will indeed arise in the exponential expansion of the interacting lagrangian, so it seems that a resummation over $n$, as in the 1 loop case, is still necessary. Where is my error?

This post imported from StackExchange Physics at 2014-07-22 07:28 (UCT), posted by SE-user bechira