• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

157 submissions , 130 unreviewed
4,116 questions , 1,513 unanswered
4,961 answers , 21,168 comments
1,470 users with positive rep
568 active unimported users
More ...

  What is the advantage of AdS/CFT in studying strongly coupled systems compared with lattice methods

+ 3 like - 0 dislike

I often heard that AdS/CFT correspondence provides a powerful framework to study strongly coupled systems, to which perturbation is not applicable. However, lattice methods still work in the non-perturbative domain. My question is, what is the advantage of AdS/CFT? Is there any example impossible to access by lattice method (I don't mind lattice get numerical than analytic results)?

This post imported from StackExchange Physics at 2014-07-21 09:31 (UCT), posted by SE-user user26143

asked Jul 21, 2014 in Theoretical Physics by user26143 (395 points) [ revision history ]
edited Jul 21, 2014 by Arnold Neumaier
Lattice methods are computationally very intensive and offer _only_ numbers as results, no insight. AdS/CFT provides more of the latter. Apart from that I can't tell when which approach would be better. Let them compete until time tells...
Forgive my ignorance, I thought AdS/CFT is a technical advance to map a strongly coupled field theory to weakly coupled gravity theory, which is easier to solve. What kind of physical insight it has been provided?

1 Answer

+ 6 like - 0 dislike

Since computations at strong coupling are hard, if not impossible, to do, any method that can provide a handle on strong coupling computations is great.  In that sense, both lattice and AdS-CFT are good. To be honest, I don't even think one should be comparing the two methods. I shall however try. Fermion doubling is an issue on the lattice (I am no expert and am sure that there are ways to get around it) but that is not an issue in the AdS-CFT correspondence. The AdS-CFT (more generally, the gauge-gravity) correspondence gets weaker as the supersymmetry is reduced  and things can get dicey, I believe, when there is no supersymmetry. Lattice methods might work better in such situations (think of pure QCD).

answered Jul 21, 2014 by suresh (1,535 points) [ revision history ]
edited Jul 21, 2014 by Arnold Neumaier

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights