# What is a free fermion model?

+ 3 like - 0 dislike
92 views

Title says it all really.. Why is the XX spin chain a free fermion (non-interacting) model, and the XXZ chain not?

Is it right that $\sum_l a_l^\dagger a_{l+1}$ isn't an interaction between fermions because it's creating a fermion on one site and destroying it on another? But why is $\sum_l a_l^\dagger a_l a_{l+1}^\dagger a_{l+1}$ an interaction term?

Is something like

\begin{equation} H_1 = -\sum_l (J+(-1)^lK) ( \sigma_l^x \sigma_{l+1}^x +\sigma_l^y \sigma_{l+1}^y) \end{equation}

a free fermion model? If not, why not?

Edit I don't have enough reputation to set a bounty, but if anyone could answer this question, I'd be very grateful!

Edit 2 Anyone?

This post imported from StackExchange Physics at 2014-06-06 02:45 (UCT), posted by SE-user user6050
lcv's answer to this question physics.stackexchange.com/q/2014/2451 seems relevant, see physics.stackexchange.com/questions/2014/…

This post imported from StackExchange Physics at 2014-06-06 02:45 (UCT), posted by SE-user Qmechanic
@Qmechanic Thank you for replying. As far I can see, Icv's answer just mentions free fermion models but doesn't say what they actually are, which is what I'm asking.

This post imported from StackExchange Physics at 2014-06-06 02:45 (UCT), posted by SE-user user6050
Whenever the Hamiltonian may be written as at most bilinear polynomial of the basic fields, it's a "free theory". Free fermion models are models with at most quadratic terms in the fermions. Such Hamiltonians are solvable in terms of one-particle states that are occupied by particles which move independently of each other. Higher-than-quadratic terms in fermions are called "interacting" because they interact: energy eigenstates can't be easily obtained from free one-particle states. If you use Feynman diagrams, interactions produce vertices of the diagrams.

This post imported from StackExchange Physics at 2014-06-06 02:45 (UCT), posted by SE-user Luboš Motl
@LubošMotl Thank you. So the example Hamiltonian is a free fermion model since in fermions, it only contains $\sum_l a_l^\dagger a_{l+1}$ and $\sum_l (-1)^l a_l^\dagger a_{l+1}$ type terms. By this reasoning, even a spin chain $H_2 = - \sum_l J_l (\sigma_l^x \sigma_{l+1}^x + \sigma_l^y \sigma_{l+1}^y)$ where $J_l$ is different for each $l$ is a free fermion model. Is that right?

This post imported from StackExchange Physics at 2014-06-06 02:45 (UCT), posted by SE-user user6050
@LubošMotl Also, if you were to expand your comment as an answer, I'd be happy to accept it.

This post imported from StackExchange Physics at 2014-06-06 02:45 (UCT), posted by SE-user user6050

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOv$\varnothing$rflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.