# Can we treat $\psi^{c}$ as a field independent from $\psi$?

+ 5 like - 0 dislike
531 views

When we derive the Dirac equation from the Lagrangian, $$\mathcal{L}=\overline{\psi}i\gamma^{\mu}\partial_{\mu}\psi-m\overline{\psi}\psi,$$ we assume $\psi$ and $\overline{\psi}=\psi^{*^{T}}\gamma^{0}$ are independent. So when we take the derivative of the Lagrangian with respect to $\overline{\psi}$, we get the Dirac equation $$0=\partial_{\mu}\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu}\overline{\psi}\right)}=\frac{\partial\mathcal{L}}{\partial\overline{\psi}}=\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi.$$

Now if we include a term with charge conjugation, $\psi^{c}=-i\gamma^{2}\psi^{*}$, into the Lagrangian (like $\Delta\mathcal{L}=\overline{\psi}\psi^{c}$), does this $\psi^c$ depend on $\overline{\psi}$ or $\psi$? Why or why not?

If $\psi^{c}$ depends on $\psi$, why wouldn't the reason that $\overline{\psi}$ and $\psi$ are independent apply for $\psi^{c}$ and $\psi$?

If $\psi^{c}$ depends on $\overline{\psi}$, how should we take derivative of $\Delta\mathcal{L}$ with respect to $\overline{\psi}$?

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user Louis Yang
Possible related? physics.stackexchange.com/q/89002/29216

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user BMS

+ 1 like - 0 dislike

The Dirac spinor $\psi$ and its complex conjugate $\psi^*$ are not independent variables, but in some calculations one can treat them as such.

For the similar question about a complex scalar field $\phi$ and its complex conjugate $\phi^*$, see e.g. this Phys.SE post.

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user Qmechanic
answered Apr 26, 2014 by (3,120 points)
Thanks for your brief answer. I am confused. For a complex variable $z$ one can always write it as real and imaginary parts $z=x+iy$. If you compute $\frac{\partial z^{*}}{\partial z}$ or $\frac{\partial z}{\partial z^{*}}$, they are both zero. So this is the same reason why one should take $\frac{\partial\phi^{*}}{\partial\phi}=0$, right?

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user Louis Yang
Recalling the precise definition of $\frac{\partial z^{*}}{\partial z}=0=\frac{\partial z}{\partial z^{*}}$, it does not necessarily imply that $z$ and $z^{*}$ are independent variables. On one hand, if $z^{*}$ denotes the complex conjugate of $z$ (so that $z$ and $z^{*}$ are not independent variables), then $\frac{\partial z^{*}}{\partial z}=0=\frac{\partial z}{\partial z^{*}}$ are merely consequences of pertinent definitions. On the other hand, if $z$ and $z^{*}$ are truly indep. complex variables, then $\frac{\partial z^{*}}{\partial z}=0=\frac{\partial z}{\partial z^{*}}$ is automatic.

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user Qmechanic
One can always write $x=\frac{z+z^{*}}{2}$ and $y=\frac{z-z^{*}}{2i}$. Then one can express the derivative as $\partial_{z}=\frac{\partial x}{\partial z}\partial_{x}+\frac{\partial y}{\partial z}\partial_{y}=\frac{\partial_{x}-i\partial_{y}}{2}$ So one get $\frac{\partial z^{*}}{\partial z}=\frac{\partial z}{\partial z^{*}}=0$. Maybe "independent" is a not a good word to describe it, but at least it is the derivative that enter the derivation of Euler-Lagrange equation.

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user Louis Yang
+ 0 like - 0 dislike

Yes, when we want to obtain the equation of motion using Euler-Lagrange equation, we should treat $\psi$ and $\psi^c$ independent, but $\overline{\psi}$ and $\psi^c$ dependent. The reason for this is that we can simply expressed $\psi^c$ in terms of $\overline{\psi}$ by $$\psi^{c}=C\overline{\psi}^{T},$$ where $C=-i\gamma^{2}\gamma^{0}$ is the charge conjugation matrix. So $\overline{\psi}$ and $\psi^c$ are the same degree of freedom.

For the derivative of $\overline{\psi}\psi^{c}$ with respect to $\overline{\psi}$, one should be really careful because $\psi$ is anticommuting. Since the derivative in Euler-Lagrange equation actually comes from the variation of Lagrangian, We should start from the variation \begin{eqnarray} \delta\left(\overline{\psi}\psi^{c}\right) & = & \delta\left(\overline{\psi}C\overline{\psi}^{T}\right)=\delta\left(\overline{\psi_{i}}C_{ij}\overline{\psi_{j}}\right)=\delta\left(\overline{\psi_{i}}\right)C_{ij}\overline{\psi_{j}}+\overline{\psi_{i}}C_{ij}\delta\overline{\psi_{j}}\\ & = & \delta\left(\overline{\psi_{i}}\right)C_{ij}\overline{\psi_{j}}-\delta\left(\overline{\psi_{j}}\right)C_{ij}\overline{\psi_{i}}, \end{eqnarray} where I use the anticommutation of the fields to get the minus sign for the last step. Now notice that $C^{T}=C^{+}=-C$. So the last term is \begin{equation} -\delta\left(\overline{\psi_{j}}\right)C_{ij}\overline{\psi_{i}}=\delta\left(\overline{\psi_{j}}\right)C_{ji}\overline{\psi_{i}}=\delta\left(\overline{\psi_{i}}\right)C_{ij}\overline{\psi_{j}}. \end{equation} and we get $\delta\left(\overline{\psi}\psi^{c}\right)=2\delta\left(\overline{\psi}\right)C\overline{\psi}^{T}.$ Therefore, the equation of motion from this term is \begin{equation} \frac{\partial}{\partial\overline{\psi}}\left(\overline{\psi}\psi^{c}\right)=2C\overline{\psi}^{T}=2\psi^{c}. \end{equation}

This post imported from StackExchange Physics at 2014-05-04 11:36 (UCT), posted by SE-user Louis Yang
answered Apr 27, 2014 by (90 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.