When reading some literatures on topological insulators, I've seen authors taking Brillouin zone(BZ) to be a sphere sometimes, especially when it comes to strong topological insulators. Also I've seen the usage of spherical BZ in these answers(1,2) by SE user Heidar. I can think of two possibilities:

(1)Some physical system has a spherical BZ. This is hard to imagine, since it seems to me that all lattice systems with translational symmetries will have a torodal BZ, by the periodicity of Bloch wavefunctions. The closest scenario I can imagine is a continuous system having $R^n$ as BZ, and somehow(in a way I cannot think of) acquires an one-point compactification.

(2)A trick that makes certain questions easier to deal with, while the true BZ is still a torus.

Can someone elaborate the idea behind a spherical BZ for me?

**Update**: I recently came across these notes(pdf) by J.Moore. In the beginning of page 9 he mentioned

We need to use one somewhat deep fact: under some assumptions, if $π_1(M)

= 0$ for some target space $M$, then maps from the torus $T^

2\to M$ are contractible to maps from the sphere $S^2

\to M$

I think this is a special case of the general math theorem I want to know, but unfortunately Moore did not give any reference so I'm not sure where to look.

EDIT: The above math theorem is intuitively acceptable to me although I'm not able to prove it. I can take this theorem as a working hypothesis for now, what I'm more interested in is, granted such theorem, what makes a $\pi_1(M)=0$ physical system candidate for strong topological insulators(robust under local perturbations), and why in $\pi_1(M)\neq0$ case we can only have weak topological insulators.