Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

 

+ 2 like - 0 dislike

You are right about your understanding of these terms. This terminology appears in extensions of the Randall-Sundrum type brane world models. The original model contains a single compact extra dimension bounded by two branes and is known as a hard wall model with the "hard wall" referring to the hard cutoff of space by the IR brane. With such a geometry it is found that the Kaluza Klein (KK) masses of particles that live in the bulk scale as $m_n^2 \sim n^2$ (like the energy levels of a particle in a box).

Attempts were made to use RS type setups to be dual to QCD in order to calculate meson masses etc. This is known as ADS/QCD. However the meson mass spectrum is what is called a Regge spectrum i.e. $m_n^2 \sim n$ and so the RS type model needed to be adapted. This paper first introduced the idea of a soft wall to solve this problem. One of the branes in the hard wall model is removed and a dilaton field $\Phi$ is introduced which dynamically cuts off the space-time $$S= \int d^5x \,\sqrt{g}\, e^{-\Phi}\mathcal{L}.$$ The profile of the dilaton in the extra dimension then determines the KK spectrum of bulk fields and for a quadratic dilaton profile ($\Phi(z) \sim z^2$) a Regge spectrum is produced.

The removal of one of the branes (hard spacetime cutoff) and replacement by a smooth dynamical cutoff coming from the dilaton coined the name "soft wall".

Following this idea, people decided to model electroweak physics with such a geometry (see e.g. here). All the standard model fields, including the Higgs must now propagate in the bulk. The new setup offered unique phenomenology and is far less constrained by electroweak precision observables and FCNCs which cause severe tensions in the original RS.

Note that since the dilaton field is not normally given a kintic term in such models, it is not a true dynamical field and one may simply consider the effect as being a different form of metric than RS. So essentially the difference between hard wall and soft wall is just a different geometry of the extra dimension which produces different phenomenology.

This post imported from StackExchange Physics at 2014-04-21 18:04 (UCT), posted by SE-user Mistake Ink
answered Jan 11, 2013 by Mistake Ink (20 points) [ no revision ]




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...