I need to verify that the solution for vanishing Weyl tensor is conformally flat metric $g_{\mu\nu} = e^{2\varphi}\eta_{\mu\nu}$. The most convenient way to show this is to prove that Weyl tensor is invariant under conformal transformation of the metric. How to prove this fast?

I have the idea to build 4-rank tensor which include terms with curvature tensor, Ricci tensor and scalar curvature and then use the requirement on invariance under infinitesimal conformal transformations. If I can show that it is Weyl tensor, I can also prove the statement. But do some alternatives exist?

This post imported from StackExchange Physics at 2014-03-17 05:58 (UCT), posted by SE-user Andrew McAddams