Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

Please welcome our new moderators!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

122 submissions , 103 unreviewed
3,497 questions , 1,172 unanswered
4,543 answers , 19,337 comments
1,470 users with positive rep
407 active unimported users
More ...

Vassiliev Higher Spin Theory and Supersymmetry

+ 19 like - 0 dislike
33 views

Recently there is renewed interest in the ideas of Vassiliev, Fradkin and others on generalizing gravity theories on deSitter or Anti-deSitter spaces to include higher spin fields (utilizing known loopholes in the Weinberg-Witten theorem by including infinitely many higher spin fields and by working with asymptotic conditions that do not permit S-matrix to exist). There is also a conjecture for a duality for the theory as formulated in asymptotically AdS space with the O(N) vector model in the large N limit.

So in this context I am curious if there are supersymmetric generalizations of the theory, and how much supersymmetry can be shown to be consistent with this set of ideas (given that the usual restriction to 32 supercharges comes from forbidding higher spin fields).

This post has been migrated from (A51.SE)
asked Sep 14, 2011 in Theoretical Physics by Moshe (2,375 points) [ no revision ]
retagged Apr 19, 2014 by dimension10

1 Answer

+ 10 like - 0 dislike

A supersymmetric extension for ${\mathrm{AdS}}_4$ background was found by Konstein and Vasiliev in Nucl.Phys.B331:475-499,1990, and later generalised by Vasiliev in hep-th/0404124 to higher dimensions. In 4d, there are three classes of infinite-dimensional extended higher spin superalgebras which generate symmetries of the higher spin equations of motion on ${\mathrm{AdS}}_4$. In each case, the bosonic part contains a subalgebra of the form ${\mathfrak{so}}(3,2) \oplus {\mathfrak{g}}(m) \oplus {\mathfrak{g}}(n)$, comprising the ${\mathrm{AdS}}_4$ isometries and ${\mathfrak{g}}$ being either ${\mathfrak{u}}$, ${\mathfrak{o}}$ or ${\mathfrak{usp}}$. The corresponding higher spin superalgebras are denoted ${\mathfrak{hg}}(m,n|4)$. They contain the usual $N$-extended lie superalgebra ${\mathfrak{osp}}(N|4)$ as a subalgebra only when $m=n$. Indeed, for $m\neq n$, massless unitary irreps of ${\mathfrak{hg}}(m,n|4)$ contain a different number of bosons and fermions. In the simplest class with ${\mathfrak{g}}={\mathfrak{u}}$, bosons have all integer spins $\gt$ 1 and are in the adjoint of ${\mathfrak{u}}(m) \oplus {\mathfrak{u}}(n)$ while fermions have all half-integer spins $\gt$ 3/2 and are in the bifundamental of ${\mathfrak{u}}(m) \oplus {\mathfrak{u}}(n)$. (The standard spin 2 graviton is contained in a diagonal ${\mathfrak{u}}(1)$ factor.) The amount of extended higher spin supersymmetry in this sense is therefore unconstrained.

This post has been migrated from (A51.SE)
answered Sep 21, 2011 by Paul_1 (340 points) [ no revision ]
Thanks, Joe! Hi José, thanks for the tip!

This post has been migrated from (A51.SE)
Hi Paul! By the way, MathJax works in this site, so you can use LaTeX code.

This post has been migrated from (A51.SE)
You get +1 from me and the bounty. Welcome to the site!

This post has been migrated from (A51.SE)
Thanks, @paul, that is what I was looking for.

This post has been migrated from (A51.SE)

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...