# Infinitesimal Lorentz transformation is antisymmetric

+ 6 like - 0 dislike
129 views

The Minkowski metric transforms under Lorentz transformations as

\begin{align*}\eta_{\rho\sigma} = \eta_{\mu\nu}\Lambda^\mu_{\ \ \ \rho} \Lambda^\nu_{\ \ \ \sigma} \end{align*}

I want to show that under a infinitesimal transformation $\Lambda^\mu_{\ \ \ \nu}=\delta^\mu_{\ \ \ \nu} + \omega^\mu_{{\ \ \ \nu}}$, that $\omega_{\mu\nu} = -\omega_{\nu\mu}$.

I tried expanding myself: \begin{align*} \eta_{\rho\sigma} &= \eta_{\mu\nu}\left(\delta^\mu_{\ \ \ \rho} + \omega^\mu_{{\ \ \ \rho}}\right)\left(\delta^\nu_{\ \ \ \sigma} + \omega^\nu_{{\ \ \ \sigma}}\right) \\ &= (\delta_{\nu\rho}+\omega_{\nu\rho})\left(\delta^\nu_{\ \ \ \sigma} + \omega^\nu_{{\ \ \ \sigma}}\right) \\ &= \delta_{\rho\sigma}+\omega^\rho_{\ \ \ \sigma}+\omega_{\sigma\rho}+\omega_{\nu\rho} \omega^\nu_{{\ \ \ \sigma}} \end{align*}

Been a long time since I've dealt with tensors so I don't know how to proceed.

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user user82235

edited Mar 6, 2014
@Qmechanic: Why the homework tag? "[...] any question where it is preferable to guide the asker to the answer rather than giving it away outright." - If it's not actual homework, shouldn't the OP decide what kind of answer he'd prefer? If I asked the question and needed the answer for actual work, I'd be very unhappy if given a pedagogical answer.

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user jdm
@jdm: The homework tag does not relate to whether it is actual homework or not; it relates to the content of the question. See Phys.SE homework policy for details.

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user Qmechanic
Sorry, I need to remember to add homework tags >_<

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user user82235
Related: physics.stackexchange.com/q/28535/2451

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user Qmechanic

+ 6 like - 0 dislike

Note that if you lower an index of the Kronecker delta, it becomes the metric:

$\eta_{\mu\nu}\delta^{\mu}_{\rho}=\delta_{\nu\rho}=\eta_{\nu\rho}$

And in your last step you got a wrong index. It should be $\omega_{\rho\sigma}$, not $\omega^{\rho}_{\sigma}$.

Then, the metric terms cancel and you neglect cuadratic terms.

That should be enough to solve it.

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user jinawee
answered Nov 21, 2013 by (120 points)
+ 4 like - 0 dislike

Since the Lorentz transformation is valid for any $x\in M_{4}$, it can be rewritten as $\Lambda_{\rho}^{\mu}\eta_{\mu\nu}\Lambda_{\sigma}^{\nu}=\eta_{\rho\sigma}$. Substituting the infinitesimal form of the Lorentz transformation into the previous formula we get

$$(\delta_{\rho}^{\mu}+\omega_{\rho}^{\mu})\eta_{\mu\nu}(\delta_{\sigma}^{\nu}+\omega_{\sigma}^{\nu})+o(\omega^{2})=\eta_{\rho\sigma}$$

after expanding

$$\eta_{\rho\sigma}+\omega_{\rho}^{\mu}\eta_{\mu\nu}\delta_{\sigma}^{\nu}+\omega_{\sigma}^{\nu}\eta_{\mu\nu}\delta_{\rho}^{\mu}+o(\omega^2)=\eta_{\rho\sigma}$$

and from this we can see that

$$\omega_{\rho\sigma}+\omega_{\sigma\rho}=0\Rightarrow\omega_{\rho\sigma}=-\omega_{\sigma\rho}$$

This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user Leonida
answered Nov 21, 2013 by (130 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$y$\varnothing$icsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.