Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New features!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

123 submissions , 104 unreviewed
3,547 questions , 1,198 unanswered
4,549 answers , 19,356 comments
1,470 users with positive rep
410 active unimported users
More ...

Same partition functions, different theories

+ 4 like - 0 dislike
36 views

I am reading the book "Basic Concepts of String Theory" by Blumenhagen, Lust and Theisen and in page 290 they say:

"It follows that the $E8\times E8$ and the $SO(32)$ heterotic string theories have the same number of states at every mass level which are however differently organized under the internal gauge symmetries. So, even though the partition functions are identical, the theories are nevertheless different. The differences show up in correlation functions."

I am trying to understand how these differences would show up in correlation functions, ie what would be an example of two correlation functions that are different in these two theories. Any references where this is done/explained would be greatly appreciated!

This post imported from StackExchange Physics at 2014-03-31 16:00 (UCT), posted by SE-user Heterotic
asked Jan 24, 2014 in Theoretical Physics by Heterotic (515 points) [ no revision ]

1 Answer

+ 3 like - 0 dislike

The differences will show up in the correlation functions because the correlation functions "know" about the group under which the states transform.

For example, the first excited level of both CFTs, one with $E_8\times E_8$ (HE) and one with $SO(32)$ (HO), contains $248+248=32\times 31/(2\times 1)=496$ states (and therefore the corresponding operators $K_i$, $i=1,2,\dots, 496$, assigned by the state-operator correspondence) that transform as the adjoint of the gauge group.

These $K_i(z)$ operators may become factors in the vertex operators in string theory (the operators encoding the external gauge bosons and their superpartners). The scattering amplitudes involving two gauge bosons (and something else) are integrals of integrands that are proportional to the correlators $$\langle K_i(z_1) K_j(z_2) \cdot \cdots \rangle $$ perhaps with some additional operators. But these correlators may be computed if you replace the $KK$ according to the OPEs (operator product expansions). These OPEs will also contain terms proportional to $K_k$ operators themselves: $$ K_i(z_1) K_j(z_2) \sim \frac 1{z_1-z_2} f_{ij}{}^k K_k(z_2) $$ where $f_{ij}{}^k$ are the structure constants of the Lie group. The structure constants of $E_8\times E_8$ and $SO(32)$ groups are different from each other – regardless of the basis of the Lie algebra you choose (for example, it's because the $E_8\times E_8$ algebra splits into two decoupled pieces while the $SO(32)$ algebra does not) so if you study the OPEs of the 496 operators $K_i$, you will be able to extract the structure constants $f_{ij}{}^k$ and therefore determine which of the two gauge groups is involved, too.

The structure constants may be extracted not only from the OPEs but also from the correlators of three vertex operators such as $$ \langle K_i(z_1) K_j(z_2)K_k(z_3) \rangle \sim f_{ij}{}^k $$ so these correlators "know" about the representations under which the operators $K_i(z)$ transform. Although these operators may look like a collection of 496 operators with the same dimension in both cases, when you switch to the interacting theory, the difference between the HE and HO theories appears through the correlators (and structure constants in them).

The formulae above were just examples for the basic operators in the adjoint. The formulae for more complicated correlators possibly involving more than 3 operators and perhaps some operators that are more excited (higher dimensions) are more involved but they display differences between HE and HO, too. At any rate, the correlators of the simplest states above (the gauge bosons) are enough to show that the theories are different at the interacting, perturbative level.

One should emphasize that after one bosonic dimension of the heterotic string is compactified on a circle, the theories actually become equivalent – T-dual to each other – but the Wilson lines and other moduli must be carefully adjusted on both sides for the theories to match. It's because the even self-dual lattices of signature 17+1 are all isometric to each other. In particular $$\Gamma^{16}_{Spin(32)/Z_2} +\Gamma^{1,1} \equiv \Gamma^8_{E_8} + \Gamma^8_{E_8} + \Gamma^{1,1}$$ after an appropriate $SO(17,1)$ "Lorentz" transformation of the lattices on both sides.

This post imported from StackExchange Physics at 2014-03-31 16:00 (UCT), posted by SE-user Luboš Motl
answered Jan 24, 2014 by Luboš Motl (10,178 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...